

AoPS Community

2001 Croatia National Olympiad

www.artofproblemsolving.com/community/c1984456 by jasperE3

1st Grade

Problem 1 Find all integers x for which $2x^2 - x - 36$ is the square of a prime number.

Problem 2 Let *S* be the center of a square ABCD and *P* be the midpoint of *AB*. The lines *AC* and *PD* meet at *M*, and the lines *BD* and *PC* meet at *N*. Prove that the radius of the incircle of the quadrilateral PMSN equals MP - MS.

Problem 3 Let a and b be positive numbers. Prove the inequality

$$\sqrt[3]{\frac{a}{b}} + \sqrt[3]{\frac{b}{a}} \le \sqrt[3]{2(a+b)\left(\frac{1}{a} + \frac{1}{b}\right)}.$$

Problem 4 Find all possible values of n for which a rectangular board $9 \times n$ can be partitioned into tiles of the shape:

https://services.artofproblemsolving.com/download.php?id=YXROYWNobWVudHMvYi8wLzdjM2Y4ZmEG =\&rn=U2NyZWVuIFNob3QgMjAyMSOwNCOyMiBhdCA1LjEzLjU3IEFNLnBuZw==

2nd Grade

Problem 1 Let $z \neq 0$ be a complex number such that $z^8 = \overline{z}$. What are the possible values of z^{2001} ?

Problem 2 The excircle of a triangle *ABC* corresponding to *A* touches the side *BC* at *K* and the rays *AB* and *AC* at *P* and *Q*, respectively. The lines *OB* and *OC* intersect *PQ* at *M* and *N*, respectively. Prove that

$$\frac{QN}{AB} = \frac{NM}{BC} = \frac{MP}{CA}.$$

Problem 3 Let there be given triples of integers (r_j, s_j, t_j) , j = 1, 2, ..., N, such that for each j, r_j, t_j, s_j are not all even. Show that one can find integers a, b, c such that $ar_j + bs_j + ct_j$ is odd for at least $\frac{4N}{7}$ of the indices j.

Problem 4 On the coordinate plane is given a polygon \mathcal{P} with area greater than 1. Prove that there exist two different points (x_1, y_1) and (x_2, y_2) inside the polygon \mathcal{P} such that $x_1 - x_2$ and $y_1 - y_2$ are both integers.

AoPS Community

2001 Croatia National Olympiad

- 3rd Grade

Problem 1 Let *O* and *P* be fixed points on a plane, and let *ABCD* be any parallelogram with center *O*. Let *M* and *N* be the midpoints of *AP* and *BP* respectively. Lines *MC* and *ND* meet at *Q*. Prove that the point *Q* lies on the lines *OP*, and show that it is independent of the choice of the parallelogram *ABCD*.

Problem 2 In a triangle *ABC* with $AC \neq BC$, *M* is the midpoint of *AB* and $\angle A = \alpha$, $\angle B = \beta$, $\angle ACM = \varphi$ and $\angle BSM = \Psi$. Prove that

$$\frac{\sin\alpha\sin\beta}{\sin(\alpha-\beta)} = \frac{\sin\varphi\sin\Psi}{\sin(\varphi-\Psi)}.$$

- **Problem 3** Numbers $1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{2001}$ are written on a blackboard. A student erases two numbers x, y and writes down the number x + y + xy instead. Determine the number that will be written on the board after 2000 such operations.
- **Problem 4** Let S be a set of 100 positive integers less than 200. Prove that there exists a nonempty subset T of S the product of whose elements is a perfect square.

4th Grade

- **Problem 1** On the unit circle k with center O, points A and B with AB = 1 are chosen and unit circles k_1 and k_2 with centers A and B are drawn. A sequence of circles (l_n) is defined as follows: circle l_1 is tangent to k internally at D_1 and to k_1 , k_2 externally, and for n > 1 circle l_n is tangent to k_1 and k_2 and to l_{n-1} at D_n . For each n, compute $d_n = OD_n$ and the radius r_n of l_n .
- **Problem 2** A piece of paper in the shape of a square FBHD with side a is given. Points G, A on FB and E, C on BH are marked so that FG = GA = AB and BE = EC = CH. The paper is folded along DG, DA, DC and AC so that G overlaps with B, and F and H overlap with E. Compute the volume of the obtained tetrahedron ABCD.
- **Problem 3** Let p_1, p_2, p_3, p_4 be four distinct primes, and let $1 = d_1 < d_2 < \ldots < d_{16} = n$ be the divisors of $n = p_1 p_2 p_3 p_4$. Determine all n < 2001 with the property that $d_9 d_8 = 22$.

Problem 4 Suppose that zeros and ones are written in the cells of an $n \times n$ board, in such a way that the four cells in the intersection of any two rows and any two columns contain at least one zero. Prove that the number of ones does not exceed $\frac{n}{2}(1 + \sqrt{4n-3})$.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.