AoPS Community

www.artofproblemsolving.com/community/c1986133
by P_Groudon, nikenissan, franchester, popcorn1, bobthegod78, rrusczyk

- Day 1 April 13

$1 \quad$ Let \mathbb{N} denote the set of positive integers. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for positive integers a and b,

$$
f\left(a^{2}+b^{2}\right)=f(a) f(b) \text { and } f\left(a^{2}\right)=f(a)^{2} .
$$

2 Rectangles $B C C_{1} B_{2}, C A A_{1} C_{2}$, and $A B B_{1} A_{2}$ are erected outside an acute triangle $A B C$. Suppose that

$$
\angle B C_{1} C+\angle C A_{1} A+\angle A B_{1} B=180^{\circ} .
$$

Prove that lines $B_{1} C_{2}, C_{1} A_{2}$, and $A_{1} B_{2}$ are concurrent.
3 An equilateral triangle Δ of side length $L>0$ is given. Suppose that n equilateral triangles with side length 1 and with non-overlapping interiors are drawn inside Δ, such that each unit equilateral triangle has sides parallel to Δ, but with opposite orientation. (An example with $n=2$ is drawn below.)

Prove that

$$
n \leq \frac{2}{3} L^{2}
$$

4 Carina has three pins, labeled A, B, and C, respectively, located at the origin of the coordinate plane. In a move, Carina may move a pin to an adjacent lattice point at distance 1 away. What is the least number of moves that Carina can make in order for triangle $A B C$ to have area 2021?
(A lattice point is a point (x, y) in the coordinate plane where x and y are both integers, not necessarily positive.)

5 A finite set S of positive integers has the property that, for each $s \in S$, and each positive integer divisor d of s, there exists a unique element $t \in S$ satisfying $\operatorname{gcd}(s, t)=d$. (The elements s and t could be equal.)

Given this information, find all possible values for the number of elements of S.
6 Let $n \geq 4$ be an integer. Find all positive real solutions to the following system of $2 n$ equations:

$$
\begin{array}{rlrl}
a_{1} & =\frac{1}{a_{2 n}}+\frac{1}{a_{2}}, & a_{2} & =a_{1}+a_{3}, \\
a_{3} & =\frac{1}{a_{2}}+\frac{1}{a_{4}}, & a_{4} & =a_{3}+a_{5}, \\
a_{5} & =\frac{1}{a_{4}}+\frac{1}{a_{6}}, & a_{6} & =a_{5}+a_{7} \\
\vdots & & \vdots \\
a_{2 n-1} & =\frac{1}{a_{2 n-2}}+\frac{1}{a_{2 n}}, & a_{2 n} & =a_{2 n-1}+a_{1}
\end{array}
$$

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

