Art of Problem Solving

AoPS Community

Iran Romanian Master of Mathematics TST 2021

www.artofproblemsolving.com/community/c1986654
by Tintarn, Mr.C

- Day 1

1 Suppose that two circles α, β with centers P, Q, respectively, intersect orthogonally at A, B. Let $C D$ be a diameter of β that is exterior to α. Let E, F be points on α such that $C E, D F$ are tangent to α, with C, E on one side of $P Q$ and D, F on the other side of $P Q$. Let S be the intersection of $C F, A Q$ and T be the intersection of $D E, Q B$. Prove that $S T$ is parallel to $C D$ and is tangent to α

2 Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ satisfying $f(x)=f(x+2)+2 f\left(x^{2}+2 x\right)$. Prove that if for all $x>1400^{2021}$, $x f(x) \leq 2021$, then $x f(x) \leq 2021$ for all $x \in \mathbb{R}^{+}$
Proposed by Navid Safaei
3 In a 3 by 3 table, by a k-worm, we mean a path of different cells $\left(S_{1}, S_{2}, \ldots, S_{k}\right)$ such that each two consecutive cells have one side in common. The k-worm at each steep can go one cell forward and turn to the ($S, S_{1}, \ldots, S_{k-1}$) if S is an unfilled cell which is adjacent (has one side in common) with S_{1}. Find the maximum number of k such that there is a k-worm (S_{1}, \ldots, S_{k}) such that after finitly many steps can be turned to (S_{k}, \ldots, S_{1}).

- Day 2

1 A polyomino is region with connected interior that is a union of a finite number of squares from a grid of unit squares. Do there exist a positive integer $n>4$ and a polyomino P contained entirely within and n-by- n grid such that P contains exactly 3 unit squares in every row and every column of the grid?

Proposed by Nikolai Beluhov
2 Let $A B C$ be a triangle with $A B \neq A C$ and with incenter I. Let M be the midpoint of $B C$, and let L be the midpoint of the circular arc $B A C$. Lines through M parallel to $B I, C I$ meet $A B, A C$ at E and F, respectively, and meet $L B$ and $L C$ at P and Q, respectively. Show that I lies on the radical axis of the circumcircles of triangles $E M F$ and $P M Q$.

Proposed by Andrew Wu
3 We call a polynomial $P(x)=a_{d} x^{d}+\ldots+a_{0}$ of degree d nice if

$$
\frac{2021\left(\left|a_{d}\right|+\ldots+\left|a_{0}\right|\right)}{2022}<\max _{0 \leq i \leq d}\left|a_{i}\right|
$$

Initially Shayan has a sequence of d distinct real numbers; $r_{1}, \ldots, r_{d} \neq \pm 1$. At each step he choose a positive integer $N>1$ and raises the d numbers he has to the exponent of N, then delete the previous d numbers and constructs a monic polynomial of degree d with these number as roots, then examine whether it is nice or not. Prove that after some steps, all the polynomials that shayan produces would be nice polynomials
Proposed by Navid Safaei

- Day 3

1 Let $P(x)=x^{2016}+2 x^{2015}+\ldots+2017, Q(x)=1399 x^{1398}+\ldots+2 x+1$. Prove that there are strictly increasing sequances $a_{i}, b_{i}, i=1, \ldots$ of positive integers such that $\operatorname{gcd}\left(a_{i}, a_{i+1}\right)=1$ for each i. Moreover, for each even $i, P\left(b_{i}\right) \nmid a_{i}, Q\left(b_{i}\right) \mid a_{i}$ and for each odd $i, P\left(b_{i}\right) \mid a_{i}, Q\left(b_{i}\right) \nmid a_{i}$
Proposed by Shayan Talaei
2 In a chess board we call a group of queens independant if no two are threatening each other. In an n by n grid, we put exaxctly one queen in each cell ofa greed. Let us denote by M_{n} the minimum number of independant groups that hteir union contains all the queens. Let k be a positive integer, prove that $M_{3 k+1} \leq 3 k+2$
Proposed by Alireza Haghi
3 Let n be an integer greater than 1 such that n could be represented as a sum of the cubes of two rational numbers, prove that n is also the sum of the cubes of two non-negative rational numbers.

Proposed by Navid Safaei

