AoPS Community

Finals 2021

www.artofproblemsolving.com/community/c1990246
by Tintarn, Flow25, Rickyminer

- Day 1

1 Let p_{i} for $i=1,2, \ldots, k$ be a sequence of smallest consecutive prime numbers ($p_{1}=2, p_{2}=3$, $p_{3}=3$ etc.). Let $N=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}$. Prove that in a set $\{1,2, \ldots, N\}$ there exist exactly $\frac{N}{2}$ numbers which are divisible by odd number of primes p_{i}.

For $k=2 p_{1}=2, p_{2}=3, N=6$. So in set $\{1,2,3,4,5,6\}$ we can find 3 number satisfying thesis: 2,3 and 4 . (1 and 5 are not divisible by 2 or 3 , and 6 is divisible by both of them so by even number of primes)

2 Let n be an integer. For pair of integers $0 \leq i, j \leq n$ there exist real number $f(i, j)$ such that:

1) $f(i, i)=0$ for all integers $0 \leq i \leq n$
2) $0 \leq f(i, l) \leq 2 \max \{f(i, j), f(j, k), f(k, l)\}$ for all integers i, j, k, l satisfying $0 \leq i \leq j \leq k \leq$ $l \leq n$.

Prove that

$$
f(0, n) \leq 2 \sum_{k=1}^{n} f(k-1, k)
$$

3 Let ω be the circumcircle of a triangle $A B C$. Let P be any point on ω different than the verticies of the triangle.
Line $A P$ intersects $B C$ at $D, B P$ intersects $A C$ at E and $C P$ intersects $A B$ at F. Let X be the projection of D onto line passing through midpoints of $A P$ and $B C, Y$ be the projection of E onto line passing through $B P$ and $A C$ and let Z be the projection of F onto line passing through midpoints of $C P$ and $A B$. Let Q be the circumcenter of triangle $X Y Z$. Prove that all possible points Q, corresponding to different positions of P lie on one circle.

- Day 2

4 Prove that for every pair of positive real numbers a, b and for every positive integer n,

$$
(a+b)^{n}-a^{n}-b^{n} \geq \frac{2^{n}-2}{2^{n-2}} \cdot a b(a+b)^{n-2}
$$

5 A convex hexagon $A B C D E F$ is given where $\measuredangle F A B+\measuredangle B C D+\measuredangle D E F=360^{\circ}$ and $\measuredangle A E B=$ $\measuredangle A D B$. Suppose the lines $A B$ and $D E$ are not parallel. Prove that the circumcenters of the triangles $\triangle A F E, \triangle B C D$ and the intersection of the lines $A B$ and $D E$ are collinear.

6 Given an integer $d \geq 2$ and a circle ω. Hansel drew a finite number of chords of circle ω. The following condition is fulfilled: each end of each chord drawn is at least an end of d different drawn chords. Prove that there is a drawn chord which intersects at least $\frac{d^{2}}{4}$ other drawn chords. Here we assume that the chords with a common end intersect.
Note: Proof that a certain drawn chord crosses at least $\frac{d^{2}}{8}$ other drawn chords will be awarded two points.

