AoPS Community

Romania National Olympiad 2021

www.artofproblemsolving.com/community/c1991554
by Tintarn, Miquel-point, VicKmath7, soryn, DanDumitrescu

- \quad Grade 7

1 Let \mathcal{C} be a circle centered at O and $A \neq O$ be a point in its interior. The perpendicular bisector of the segment $O A$ meets \mathcal{C} at the points B and C, and the lines $A B$ and $A C$ meet \mathcal{C} again at D and E, respectively. Show that the circles $(O B C)$ and $(A D E)$ have the same centre.

Ion Pătrașcu, Ion Cotoi
2 Solve the system in reals: $\frac{4-a}{b}=\frac{5-b}{a}=\frac{10}{a^{2}+b^{2}}$.
3 Let $A B C$ be a scalene triangle with $\angle B A C>90^{\circ}$. Let D and E be two points on the side $B C$ such that $\angle B A D=\angle A C B$ and $\angle C A E=\angle A B C$. The angle-bisector of $\angle A C B$ meets $A D$ at N, If $M N \| B C$, determine $\angle(B M, C N)$.

Petru Braica

4 Determine the smallest non-negative integer n such that

$$
\sqrt{(6 n+11)(6 n+14)(20 n+19)} \in \mathbb{Q} .
$$

Mihai Bunget

- \quad Grade 8

1 In the cuboid $A B C D A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ with $A B=a, A D=b$ and $A A^{\prime}=c$ such that $a>b>c>0$, the points E and F are the orthogonal projections of A on the lines $A^{\prime} D$ and $A^{\prime} B$, respectively, and the points M and N are the orthogonal projections of C on the lines $C^{\prime} D$ and $C^{\prime} B$, respectively. Let $D F \cap B E=\{G\}$ and $D N \cap B M=\{P\}$.

- Show that $\left(A^{\prime} A G\right) \|\left(C^{\prime} C P\right)$ and determine the distance between these two planes;
- Show that $G P \|(A B C)$ and determine the distance between the line $G P$ and the plane $(A B C)$.

Petre Simion, Nicolae Victor Ioan

2 Prove that for all positive real numbers a, b, c the following inequality holds:

$$
(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq \frac{2\left(a^{2}+b^{2}+c^{2}\right)}{a b+b c+c a}+7
$$

and determine all cases of equality.

Lucian Petrescu

3 Solve the system in reals: $\left(x+\sqrt{x^{2}+1}\right)\left(y+\sqrt{y^{2}+1}\right)=2022$ and $x+y=\frac{2021}{\sqrt{2022}}$
4 Students in a class of n students had to solve 2^{n-1} problems on an exam. It turned out that for each pair of distinct problems:

- there is at least one student who has solved both
- there is at least one student who has solved one of them, but not the other.

Show that there is a problem solved by all the students in the class.

- \quad Grade 9

1 Let $A B C$ be an acute-angled triangle with the circumcenter O. Let D be the foot of the altitude from A. If $O D \| A B$, show that $\sin 2 B=\cot C$.

Mădălin Mitrofan

2 Let $P_{0}, P_{1}, \ldots, P_{2021}$ points on the unit circle of centre O such that for each $n \in\{1,2, \ldots, 2021\}$ the length of the arc from P_{n-1} to P_{n} (in anti-clockwise direction) is in the interval $\left[\frac{\pi}{2}, \pi\right]$. Determine the maximum possible length of the vector:

$$
\overrightarrow{O P_{0}}+\overrightarrow{O P_{1}}+\ldots+\overrightarrow{O P_{2021}}
$$

Mihai Iancu

3 If $a, b, c>0, a+b+c=1$, then:

$$
\frac{1}{a b c}+\frac{4}{a^{2}+b^{2}+c^{2}} \geq \frac{13}{a b+b c+c a}
$$

4 Let A be a finite set of non-negative integers. Determine all functions $f: \mathbb{Z}_{\geq 0} \rightarrow A$ such that

$$
f(|x-y|)=|f(x)-f(y)|
$$

for each $x, y \in \mathbb{Z}_{\geq 0}$.
Andrei Bâra

- \quad Grade 10

1 Find the complex numbers x, y, z, with $|x|=|y|=|z|$,knowing that $x+y+z$ and $x^{3}+y^{3}+z^{3}$ are be real numbers.

2 Let $a, b, c, d \in \mathbb{Z}_{\geq 0}, d \neq 0$ and the function $f: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Z}_{\geq 0}$ defined by

$$
f(n)=\left\lfloor\frac{a n+b}{c n+d}\right\rfloor \text { for all } n \in \mathbb{Z}_{\geq 0}
$$

Prove that the following are equivalent:

- f is surjective;
- $c=0, b<d$ and $0<a \leq d$.

Tiberiu Trif

3 Let $n \geq 2$ be a positive integer such that the set of nth roots of unity has less than $2^{\lfloor\sqrt{n}\rfloor}-1$ subsets with the sum 0 . Show that n is a prime number.

Cristi Săvescu

4 Determine all nonzero integers a for which there exists two functions $f, g: \mathbb{Q} \rightarrow \mathbb{Q}$ such that

$$
f(x+g(y))=g(x)+f(y)+a y \text { for all } x, y \in \mathbb{Q} .
$$

Also, determine all pairs of functions with this property.
Vasile Pop

- \quad Grade 11

1 Let $f:[a, b] \rightarrow \mathbb{R}$ a function with Intermediate Value property such that $f(a) * f(b)<0$. Show that there exist α, β such that $a<\alpha<\beta<b$ and $f(\alpha)+f(\beta)=f(\alpha) * f(\beta)$.

2 Let $n \geq 2$ and $a_{1}, a_{2}, \ldots, a_{n}$, nonzero real numbers not necessarily distinct. We define matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n} \in M_{n}(\mathbb{R}), a_{i, j}=\max \left\{a_{i}, a_{j}\right\}, \forall i, j \in\{1,2, \ldots, n\}$. Show that $\operatorname{rank}(A)=\mathbf{c a r d}$ $\left\{a_{k} \mid k=1,2, \ldots n\right\}$

3 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ a function $n \geq 2$ times differentiable so that: $\lim _{x \rightarrow \infty} f(x)=l \in \mathbb{R}$ and $\lim _{x \rightarrow \infty} f^{(n)}(x)=0$.
Prove that: $\lim _{x \rightarrow \infty} f^{(k)}(x)=0$ for all $k \in\{1,2, \ldots, n-1\}$, where $f^{(k)}$ is the k - th derivative of f.

4 Let $n \geq 2$ and matrices $A, B \in M_{n}(\mathbb{R})$. There exist $x \in \mathbb{R} \backslash\left\{0, \frac{1}{2}, 1\right\}$, such that $x A B+(1-x) B A=$ I_{n}. Show that $(A B-B A)^{n}=O_{n}$.

- \quad Grade 12

1 Find all continuous functions $f:[0,1] \rightarrow[0, \infty)$ such that:

$$
\int_{0}^{1} f(x) d x \cdot \int_{0}^{1} f^{2}(x) d x \cdot \ldots \cdot \int_{0}^{1} f^{2020}(x) d x=\left(\int_{0}^{1} f^{2021}(x) d x\right)^{1010}
$$

2 Determine all non-trivial finite rings with am unit element in which the sum of all elements is invertible.

Mihai Opincariu

$3 \quad$ Given is an positive integer $a>2$
a) Prove that there exists positive integer n different from 1, which is not a prime, such that $a^{n}=1(\bmod n)$
b) Prove that if p is the smallest positive integer, different from 1 , such that $a^{p}=1(\bmod p)$, then p is a prime.
c) There does not exist positive integer n, different from 1 , such that $2^{n}=1(\bmod n)$

4 Let be $f:[0,1] \rightarrow[0,1]$ a continuous and bijective function,such that :
$f(0)=0$. Then the following inequality holds:
$(\alpha+2) \cdot \int_{0}^{1} x^{\alpha}\left(f(x)+f^{-1}(x)\right) \leq 2, \forall \alpha \geq 0$

