

2021 Romania National Olympiad

Romania National Olympiad 2021

www.artofproblemsolving.com/community/c1991554 by Tintarn, Miquel-point, VicKmath7, soryn, DanDumitrescu

Grade 7

_

Let C be a circle centered at O and $A \neq O$ be a point in its interior. The perpendicular bisector 1 of the segment OA meets C at the points B and C, and the lines AB and AC meet C again at D and E, respectively. Show that the circles (OBC) and (ADE) have the same centre.

Ion Pătrașcu, Ion Cotoi

- Solve the system in reals: $\frac{4-a}{b} = \frac{5-b}{a} = \frac{10}{a^2+b^2}$. 2
- 3 Let ABC be a scalene triangle with $\angle BAC > 90^\circ$. Let D and E be two points on the side BC such that $\angle BAD = \angle ACB$ and $\angle CAE = \angle ABC$. The angle-bisector of $\angle ACB$ meets AD at N, If $MN \parallel BC$, determine $\angle (BM, CN)$.

Petru Braica

4 Determine the smallest non-negative integer n such that

$$\sqrt{(6n+11)(6n+14)(20n+19)} \in \mathbb{Q}.$$

Mihai Bunget

Grade 8

- In the cuboid ABCDA'B'C'D' with AB = a, AD = b and AA' = c such that a > b > c > 0, the 1 points E and F are the orthogonal projections of A on the lines A'D and A'B, respectively, and the points M and N are the orthogonal projections of C on the lines C'D and C'B, respectively. Let $DF \cap BE = \{G\}$ and $DN \cap BM = \{P\}$.
 - Show that $(A'AG) \parallel (C'CP)$ and determine the distance between these two planes;
 - Show that $GP \parallel (ABC)$ and determine the distance between the line GP and the plane (ABC).

Petre Simion, Nicolae Victor Ioan

2 Prove that for all positive real numbers *a*, *b*, *c* the following inequality holds:

$$(a+b+c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \ge \frac{2(a^2 + b^2 + c^2)}{ab + bc + ca} + 7$$

2021 Romania National Olympiad

and determine all cases of equality.

Lucian Petrescu

3	Solve the system in reals: $(x + \sqrt{x^2 + 1})(y + \sqrt{y^2 + 1}) = 2022$ and $x + y = \frac{2021}{\sqrt{2022}}$
4	 Students in a class of n students had to solve 2ⁿ⁻¹ problems on an exam. It turned out that for each pair of distinct problems: there is at least one student who has solved both there is at least one student who has solved one of them, but not the other. Show that there is a problem solved by all the students in the class.
-	Grade 9
1	Let ABC be an acute-angled triangle with the circumcenter O . Let D be the foot of the altitude from A . If $OD \parallel AB$, show that $\sin 2B = \cot C$. Mădălin Mitrofan
_	

2 Let $P_0, P_1, \ldots, P_{2021}$ points on the unit circle of centre *O* such that for each $n \in \{1, 2, \ldots, 2021\}$ the length of the arc from P_{n-1} to P_n (in anti-clockwise direction) is in the interval $[\frac{\pi}{2}, \pi]$. Determine the maximum possible length of the vector:

$$\overrightarrow{OP_0} + \overrightarrow{OP_1} + \ldots + \overrightarrow{OP_{2021}}.$$

Mihai Iancu

3 If a, b, c > 0, a + b + c = 1,then: $\frac{1}{abc} + \frac{4}{a^2 + b^2 + c^2} \ge \frac{13}{ab + bc + ca}$

4 Let A be a finite set of non-negative integers. Determine all functions $f: \mathbb{Z}_{\geq 0} \to A$ such that

$$f(|x - y|) = |f(x) - f(y)|$$

for each $x, y \in \mathbb{Z}_{\geq 0}$.

Andrei Bâra

Grade 10

1 Find the complex numbers x, y, z, with |x| = |y| = |z|, knowing that

x + y + z and $x^3 + y^3 + z^3$ are be real numbers.

2

2021 Romania National Olympiad

 $f(n) = \left| \frac{an+b}{cn+d} \right| \text{ for all } n \in \mathbb{Z}_{\geq 0}.$ Prove that the following are equivalent: - f is surjective; - c = 0, b < d and $0 < a \le d$. Tiberiu Trif Let $n \ge 2$ be a positive integer such that the set of nth roots of unity has less than $2^{\lfloor \sqrt{n} \rfloor} - 1$ 3 subsets with the sum 0. Show that n is a prime number. Cristi Săvescu 4 Determine all nonzero integers a for which there exists two functions $f, g: \mathbb{Q} \to \mathbb{Q}$ such that f(x+q(y)) = q(x) + f(y) + ay for all $x, y \in \mathbb{Q}$. Also, determine all pairs of functions with this property. Vasile Pop Grade 11 _ 1 Let $f:[a,b] \to \mathbb{R}$ a function with Intermediate Value property such that f(a) * f(b) < 0. Show that there exist α , β such that $a < \alpha < \beta < b$ and $f(\alpha) + f(\beta) = f(\alpha) * f(\beta)$. 2 Let $n \geq 2$ and a_1, a_2, \ldots, a_n , nonzero real numbers not necessarily distinct. We define matrix $A = (a_{ij})_{1 \leq i,j \leq n} \in M_n(\mathbb{R})$, $a_{i,j} = max\{a_i, a_j\}$, $\forall i, j \in \{1, 2, \dots, n\}$. Show that rank(A)= card $\{a_k | k = 1, 2, \dots n\}$ 3 Let $f : \mathbb{R} \to \mathbb{R}$ a function $n \geq 2$ times differentiable so that: $\lim_{x\to\infty} f(x) = l \in \mathbb{R}$ and $\lim_{x \to \infty} f^{(n)}(x) = 0.$ Prove that: $\lim_{x\to\infty} f^{(k)}(x) = 0$ for all $k \in \{1, 2, ..., n-1\}$, where $f^{(k)}$ is the k - th derivative of f. 4 Let $n \ge 2$ and matrices $A, B \in M_n(\mathbb{R})$. There exist $x \in \mathbb{R} \setminus \{0, \frac{1}{2}, 1\}$, such that xAB + (1-x)BA = 0 I_n . Show that $(AB - BA)^n = O_n$. _ Grade 12

Let $a, b, c, d \in \mathbb{Z}_{\geq 0}$, $d \neq 0$ and the function $f : \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0}$ defined by

2021 Romania National Olympiad

Find all continuous functions $f:[0,1] \rightarrow [0,\infty)$ such that: 1 $\int_{0}^{1} f(x) \, dx \cdot \int_{0}^{1} f^{2}(x) \, dx \cdot \dots \cdot \int_{0}^{1} f^{2020}(x) \, dx = \left(\int_{0}^{1} f^{2021}(x) \, dx\right)^{1010}$ Determine all non-trivial finite rings with am unit element in which the sum of all elements is 2 invertible. Mihai Opincariu 3 Given is an positive integer a > 2a) Prove that there exists positive integer n different from 1, which is not a prime, such that $a^n = 1(modn)$ b) Prove that if p is the smallest positive integer, different from 1, such that $a^p = 1(modp)$, then p is a prime. c) There does not exist positive integer n, different from 1, such that $2^n = 1(modn)$ Let be $f:[0,1] \rightarrow [0,1]$ a continuous and bijective function, such that : 4 f(0) = 0. Then the following inequality holds: $(\alpha+2) \cdot \int_0^1 x^\alpha \left(f(x) + f^{-1}(x) \right) \le 2, \forall \alpha \ge 0$

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.