

AoPS Community

2001 Brazil Team Selection Test

www.artofproblemsolving.com/community/c1993322

by jasperE3, anonymouslonely, TripteshBiswas, JG, mmaht, Potla

Test 1

Problem 1 Find all functions f defined on real numbers and taking values in the set of real numbers such that $f(x + y) + f(y + z) + f(z + x) \ge f(x + 2y + 3z)$ for all real numbers x, y, z.

There is an infinity of such functions. Every function with the property that $3 \inf f \ge \sup f$ is a good one. I wonder if there is a way to find all the solutions. It seems very strange.

Problem 2 Let f(n) denote the least positive integer k such that $1 + 2 + \dots + k$ is divisible by n. Show that f(n) = 2n - 1 if and only if n is a power of 2.

Problem 3 For which positive integers n is there a permutation $(x_1, x_2, ..., x_n)$ of 1, 2, ..., n such that all the differences $|x_k - k|$, k = 1, 2, ..., n, are distinct?

Problem 4 Let ABC be a triangle with circumcenter O. Let P and Q be points on the segments AB and AC, respectively, such that BP : PQ : QC = AC : CB : BA. Prove that the points A, P, Q and O lie on one circle.

Alternative formulation. Let O be the center of the circumcircle of a triangle ABC. If P and Q are points on the sides AB and AC, respectively, satisfying $\frac{BP}{PQ} = \frac{CA}{BC}$ and $\frac{CQ}{PQ} = \frac{AB}{BC}$, then show that the points A, P, Q and O lie on one circle.

Test 2

Problem 1 given that p,q are two polynomials such that each one has at least one root and

$$p(1 + x + q(x)^2) = q(1 + x + p(x)^2)$$

then prove that p=q

Problem 2 A set *S* consists of *k* sequences of 0, 1, 2 of length *n*. For any two sequences $(a_i), (b_i) \in S$ we can construct a new sequence (c_i) such that $c_i = \lfloor \frac{a_i+b_i+1}{2} \rfloor$ and include it in *S*. Assume that after performing finitely many such operations we obtain all the 3n sequences of 0, 1, 2 of length *n*. Find the least possible value of *k*.

Problem 3 In a triangle ABC, the internal and external bisectors of the angle A intersect the line BC at D and E respectively. The line AC meets the circle with diameter DE again at F. The

AoPS Community

2001 Brazil Team Selection Test

tangent line to the circle ABF at A meets the circle with diameter DE again at G. Show that AF = AG.

Problem 4 Prove that for all integers $n \ge 3$ there exists a set $A_n = \{a_1, a_2, \dots, a_n\}$ of n distinct natural numbers such that, for each $i = 1, 2, \dots, n$,

$$\prod_{\substack{1 \le k \le n \\ k \ne i}} a_k \equiv 1 \pmod{a_i}.$$

Act of Problem Solving is an ACS WASC Accredited School.