AoPS Community

www.artofproblemsolving.com/community/c1993322
by jasperE3, anonymouslonely, TripteshBiswas, JG, mmaht, Potla

- \quad Test 1

Problem 1 Find all functions f defined on real numbers and taking values in the set of real numbers such that $f(x+y)+f(y+z)+f(z+x) \geq f(x+2 y+3 z)$ for all real numbers x, y, z.

There is an infinity of such functions. Every function with the property that $3 \inf f \geq \sup f$ is a good one. I wonder if there is a way to find all the solutions. It seems very strange.

Problem 2 Let $f(n)$ denote the least positive integer k such that $1+2+\cdots+k$ is divisible by n. Show that $f(n)=2 n-1$ if and only if n is a power of 2 .

Problem 3 For which positive integers n is there a permutation $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of $1,2, \ldots, n$ such that all the differences $\left|x_{k}-k\right|, k=1,2, \ldots, n$, are distinct?

Problem 4 Let $A B C$ be a triangle with circumcenter O. Let P and Q be points on the segments $A B$ and $A C$, respectively, such that $B P: P Q: Q C=A C: C B: B A$.
Prove that the points A, P, Q and O lie on one circle.
Alternative formulation. Let O be the center of the circumcircle of a triangle $A B C$. If P and Q are points on the sides $A B$ and $A C$, respectively, satisfying $\frac{B P}{P Q}=\frac{C A}{B C}$ and $\frac{C Q}{P Q}=\frac{A B}{B C}$, then show that the points A, P, Q and O lie on one circle.

- \quad Test 2

Problem 1 given that p,q are two polynomials such that each one has at least one root and

$$
p\left(1+x+q(x)^{2}\right)=q\left(1+x+p(x)^{2}\right)
$$

then prove that $p=q$
Problem 2 A set S consists of k sequences of $0,1,2$ of length n. For any two sequences $\left(a_{i}\right),\left(b_{i}\right) \in S$ we can construct a new sequence $\left(c_{i}\right)$ such that $c_{i}=\left\lfloor\frac{a_{i}+b_{i}+1}{2}\right\rfloor$ and include it in S. Assume that after performing finitely many such operations we obtain all the $3 n$ sequences of $0,1,2$ of length n. Find the least possible value of k.

Problem 3 In a triangle $A B C$, the internal and external bisectors of the angle A intersect the line $B C$ at D and E respectively. The line $A C$ meets the circle with diameter $D E$ again at F. The
tangent line to the circle $A B F$ at A meets the circle with diameter $D E$ again at G. Show that $A F=A G$.

Problem 4 Prove that for all integers $n \geq 3$ there exists a set $A_{n}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of n distinct natural numbers such that, for each $i=1,2, \ldots, n$,

$$
\prod_{\substack{1 \leq k \leq n \\ k \neq i}} a_{k} \equiv 1 \quad\left(\bmod a_{i}\right) .
$$

