AoPS Community

www.artofproblemsolving.com/community/c1995103
by jasperE3, jonny, Megus

- \quad Test 1

Problem 1 Find all positive integers n with the following property: There exists a positive integer k and mutually distinct integers $x_{1}, x_{2}, \ldots, x_{n}$ such that the set $\left\{x_{i}+x_{j} \mid 1 \leq i<j \leq n\right\}$ is a set of distinct powers of k.

Problem 2 If a, b, c, d are Distinct Real no. such that
$a=\sqrt{4+\sqrt{5+a}}$
$b=\sqrt{4-\sqrt{5+b}}$
$c=\sqrt{4+\sqrt{5-c}}$
$d=\sqrt{4-\sqrt{5-d}}$
Then $a b c d=$
Problem 3 Let $B D$ and $C E$ be the bisectors of the interior angles $\angle B$ and $\angle C$, respectively ($D \in A C$, $E \in A B$). Consider the circumcircle of $A B C$ with center O and the excircle corresponding to the side $B C$ with center I_{a}. These two circles intersect at points P and Q.
(a) Prove that $P Q$ is parallel to $D E$.
(b) Prove that $I_{a} O$ is perpendicular to $D E$.

Problem 4 Let $Q+$ and Z denote the set of positive rationals and the set of integers, respectively. Find all functions f : $Q+Z$ satisfying the following conditions:
(i) $f(1999)=1$;
(ii) $f(a b)=f(a)+f(b)$ for all $a, b Q+;$
(iii) $f(a+b) \operatorname{minf}(a), f(b)$ for $a l l a, b \quad Q+$.

Problem 5 (a) If m, n are positive integers such that $2^{n}-1$ divides $m^{2}+9$, prove that n is a power of 2 ;
(b) If n is a power of 2 , prove that there exists a positive integer m such that $2^{n}-1$ divides $m^{2}+9$.

- \quad Test 2

Problem 1 For a positive integer n , let $w(n)$ denote the number of distinct prime divisors of n . Determine the least positive integer k such that $2^{w(n)} \leq k \sqrt[4]{n}$ for all positive integers n.

Problem 2 In a triangle $A B C$, the bisector of the angle at A of a triangle $A B C$ intersects the segment $B C$ and the circumcircle of $A B C$ at points A_{1} and A_{2}, respectively. Points $B_{1}, B_{2}, C_{1}, C_{2}$ are analogously defined. Prove that

$$
\frac{A_{1} A_{2}}{B A_{2}+C A_{2}}+\frac{B_{1} B_{2}}{C B_{2}+A B_{2}}+\frac{C_{1} C_{2}}{A C_{2}+B C_{2}} \geq \frac{3}{4}
$$

Problem 3 A sequence a_{n} is defined by

$$
\begin{gathered}
a_{0}=0, \quad a_{1}=3 \\
a_{n}=8 a_{n-1}+9 a_{n-2}+16 \text { for } n \geq 2
\end{gathered}
$$

Find the least positive integer h such that $a_{n+h}-a_{n}$ is divisible by 1999 for all $n \geq 0$.
Problem 4 Assume that it is possible to color more than half of the surfaces of a given polyhedron so that no two colored surfaces have a common edge.
(a) Describe one polyhedron with the above property.
(b) Prove that one cannot inscribe a sphere touching all the surfaces of a polyhedron with the above property.

