AoPS Community

www.artofproblemsolving.com/community/c1995525 by parmenides51

1 For $r>0$ denote by B_{r} the set of points at distance at most r length units from the origin. If P_{r} is the set of the points in B_{r} whit integer coordinates, show that the equation

$$
x y^{3} z+2 x^{3} z^{3}-3 x^{5} y=0
$$

has an odd number of solutions (x, y, z) in P_{r}.
2 The paper folding art origami is usually performed with square sheets of paper. Someone folds the sheet once along a line through the center of the sheet in orde to get a nonagon. Let p be the perimeter of the nonagon minus the length of the fold, i.e. the total length of the eight sides that are not folds, and denote by s the original side length of the square. Express the area of the nonagon in terms of p and s.

3 Determine all primes p and all non-negative integers m and n, such that

$$
1+p^{n}=m^{3} .
$$

4 A robotic lawnmower is located in the middle of a large lawn. Due a manufacturing defect, the robot can only move straight ahead and turn in directions that are multiples of 60°. A fence must be set up so that it delimits the entire part of the lawn that the robot can get to, by traveling along a curve with length no more than 10 meters from its starting position, given that it is facing north when it starts. How long must the fence be?
$5 \quad$ Let $n \geq 2$ be a positive integer. Show that there are exactly $2^{n-3} n(n-1) n$-tuples of integers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, which satisfy the conditions:
(i) $a_{1}=0$;
(ii) for each $m, 2 \leq m \leq n$, there is an index in $m, 1 \leq i_{m}<m$, such that $\left|a_{i_{m}}-a_{m}\right| \leq 1$;
(iii) the n-tuple ($a_{1}, a_{2}, \ldots, a_{n}$) contains exactly $n-1$ different numbers.

6 Let a, b, c, be real numbers such that

$$
a^{2} b^{2}+18 a b c>4 b^{3}+4 a^{3} c+27 c^{2} .
$$

Prove that $a^{2}>3 b$.

