AoPS Community

2018 Swedish Mathematical Competition

www.artofproblemsolving.com/community/c1995582
by parmenides51

1 Let the $A B C D$ be a quadrilateral without parallel sides, inscribed in a circle. Let P and Q be the intersection points between the lines containing the quadrilateral opposite sides. Show that the bisectors to the angles at P and Q are parallel to the bisectors of the angles at the intersection point of the diagonals of the quadrilateral.

2 Find all functions $f: R \rightarrow R$ that satisfy $f(x)+2 f\left(\sqrt[3]{1-x^{3}}\right)=x^{3}$ for all real x.
(Here $\sqrt[3]{x}$ is defined all over R.)
$3 \quad$ Let m be a positive integer. An m-pattern is a sequence of m symbols of strict inequalities. An m-pattern is said to be realized by a sequence of $m+1$ real numbers when the numbers meet each of the inequalities in the given order. (For example, the 5 -pattern $<,<,\rangle,<$,$\rangle is realized$ by the sequence of numbers $1,4,7,-3,1,0$.)
Given m, which is the least integer n for which there exists any number sequence x_{1}, \ldots, x_{n} such that each m-pattern is realized by a subsequence $x_{i_{1}}, \ldots, x_{i_{m+1}}$ with $1 \leq i_{1}<\ldots<i_{m+1} \leq n$?

4 Find the least positive integer n with the property:
Among arbitrarily n selected consecutive positive integers, all smaller than 2018, there is at least one that is divisible by its sum of digits .

5 In a triangle $A B C$, two lines are drawn that together trisect the angle at A. These intersect the side $B C$ at points P and Q so that P is closer to B and Q is closer to C. Determine the smallest constant k such that $|P Q| \leq k(|B P|+|Q C|)$, for all such triangles. Determine if there are triangles for which equality applies.

6 For which positive integers n can the polynomial $p(x)=1+x^{n}+x^{2 n}$ is written as a product of two polynomials with integer coefficients (of degree ≥ 1)?

