www.artofproblemsolving.com/community/c1995584
by parmenides51

1 How many of the numbers $1 \cdot 2 \cdot 3,2 \cdot 3 \cdot 4, \ldots, 2020 \cdot 2021 \cdot 2022$ are divisible by 2020 ?
2 The medians of the sides $A C$ and $B C$ in the triangle $A B C$ are perpendicular to each other. Prove that $\frac{1}{2}<\frac{|A C|}{|B C|}<2$.

3 Determine all bounded functions $f: R \rightarrow R$, such that $f(f(x)+y)=f(x)+f(y)$, for all real x, y.

4 Which is the least positive integer n for which it is possible to find a (non-degenerate) n-gon with sidelengths $1,2, \ldots, n$, and where all vertices have integer coordinates?

5 Find all integers a such that there is a prime number of $p \geq 5$ that divides $\binom{p-1}{2}+\binom{p-1}{3} a+\binom{p-1}{4} a^{2}+\ldots+\binom{p-1}{p-3} a^{p-5}$.

6 A finite set of axis parallel cubes in space has the property of each point of the room is located in a maximum of M different cubes. Show that you can divide the amount of cubes in $8(M-1)+1$ subsets (or less) with the property that the cubes in each subset lacks common points. (An axis parallel cube is a cube whose edges are parallel to the coordinate axes.)

