Art of Problem Solving

AoPS Community

www.artofproblemsolving.com/community/c1996664
by jasperE3

- $\quad 1$ st Grade

Problem 1 Let k be a positive integer. Prove that:
(a) If $k=m+2 m n+n$ for some positive integers m, n, then $2 k+1$ is composite.
(b) If $2 k+1$ is composite, then there exist positive integers m, n such that $k=m+2 m n+n$.

Problem 2 Let a be an integer and p a prime number that divides both $5 a-1$ and $a-10$. Show that p also divides $a-3$.

Problem 3 Let $M N$ be a chord of a circle with diameter $A B$, and let A^{\prime} and B^{\prime} be the orthogonal projections of A and B onto $M N$. Prove that $M A^{\prime}=B^{\prime} N$.

Problem 4 Janez wants to make an $m \times n$ grid (consisting of unit squares) using equal elements of the form \llcorner, where each leg of an element has the unit length. No two elements can overlap. For which values of m and n can Janez do the task?

- \quad 2nd Grade

Problem 1 Prove that if real numbers a, b, c, d satisfy $a^{2}+b^{2}+(a+b)^{2}=c^{2}+d^{2}+(c+d)^{2}$, then they also satisfy $a^{4}+b^{4}+(a+b)^{4}=c^{4}+d^{4}+(c+d)^{4}$.

Problem 2 Points M, N, P, Q are taken on the sides $A B, B C, C D, D A$ respectively of a square $A B C D$ such that $A M=B N=C P=D Q=\frac{1}{n} A B$. Find the ratio of the area of the square determined by the lines $M N, N P, P Q, Q M$ to the ratio of $A B C D$.

Problem 3 Let C and D be different points on the semicircle with diameter $A B$. The lines $A C$ and $B D$ intersect at E, and the lines $A D$ and $B C$ intersect at F. Prove that the midpoints X, Y, Z of the segments $A B, C D, E F$ respectively are collinear.

Problem 4 Prove that among any 1001 numbers taken from the numbers $1,2, \ldots, 1997$ there exist two with the difference 4.

- $\quad 3 r d$ Grade

Problem 1 Suppose that m, n are integers greater than 1 such that $m+n-1$ divides $m^{2}+n^{2}-1$. Prove that $m+n-1$ cannot be a prime number.

Problem 2 Determine all positive integers n for which there exists a polynomial $p(x)$ of degree n with integer coefficients such that it takes the value n in n distinct integer points and takes the value 0 at point 0 .

Problem 3 In a convex quadrilateral $A B C D$ we have $\angle A D B=\angle A C D$ and $A C=C D=D B$. If the diagonals $A C$ and $B D$ intersect at X, prove that $\frac{C X}{B X}-\frac{A X}{D X}=1$.

Problem 4 In an enterprise, no two employees have jobs of the same difficulty and no two of them take the same salary. Every employee gave the following two claims:
(i) Less than 12 employees have a more difficult work;
(ii) At least 30 employees take a higher salary.

Assuming that an employee either always lies or always tells the truth, find how many employees are there in the enterprise.

- \quad 4th Grade

Problem 1 Marko chose two prime numbers a and b with the same number of digits and wrote them down one after another, thus obtaining a number c. When he decreased c by the product of a and b, he got the result 154 . Determine the number c.

Problem 2 The Fibonacci sequence f_{n} is defined by $f_{1}=f_{2}=1$ and $f_{n+2}=f_{n+1}+f_{n}$ for $n \in \mathbb{N}$.
(a) Show that f_{1005} is divisible by 10.
(b) Show that f_{1005} is not divisible by 100 .

Problem 3 Two disjoint circles k_{1} and k_{2} with centers O_{1} and O_{2} respectively lie on the same side of a line p and touch the line at A_{1} and A_{2} respectively. The segment $O_{1} O_{2}$ intersects k_{1} at B_{1} and k_{2} at B_{2}. Prove that $A_{1} B_{1} \perp A_{2} B_{2}$.

Problem 4 The expression $* 3^{5} * 3^{4} * 3^{3} * 3^{2} * 3 * 1$ is given. Ana and Branka alternately change the signs $*$ to + or - (one time each turn). Can Branka, who plays second, do this so as to obtain an expression whose value is divisible by 7 ?

