AoPS Community

www.artofproblemsolving.com/community/c2000045
by jasperE3, Babai, parmenides51

- $\quad 1$ st Grade

Problem 1 Find all positive integer solutions x, y, z such that $1 / x+2 / y-3 / z=1$
Problem 2 The incircle of a triangle $A B C$ touches $B C, C A, A B$ at A_{1}, B_{1}, C_{1}, respectively. Find the angles of $\triangle A_{1} B_{1} C_{1}$ in terms of the angles of $\triangle A B C$.

Problem 3 Let $m>1$ be an integer. Determine the number of positive integer solutions of the equation $\left\lfloor\frac{x}{m}\right\rfloor=\left\lfloor\frac{x}{m-1}\right\rfloor$.

Problem 4 We are given coins of $1,2,5,10,20,50$ lipas and of 1 kuna (Croatian currency: 1 kuna $=100$ lipas). Prove that if a bill of M lipas can be paid by N coins, then a bill of N kunas can be paid by M coins.

- 2nd Grade

Problem 1 Let $a>0$ and x_{1}, x_{2}, x_{3} be real numbers with $x_{1}+x_{2}+x_{3}=0$. Prove that

$$
\log _{2}\left(1+a^{x_{1}}\right)+\log _{2}\left(1+a^{x_{2}}\right)+\log _{2}\left(1+a^{x_{3}}\right) \geq 3
$$

Problem 2 Two squares $A C X E$ and $C B D Y$ are constructed in the exterior of an acute-angled triangle $A B C$. Prove that the intersection of the lines $A D$ and $B E$ lies on the altitude of the triangle from C.

Problem 3 Let j and k be integers. Prove that the inequality

$$
\lfloor(j+k) \alpha\rfloor+\lfloor(j+k) \beta\rfloor \geq\lfloor j \alpha\rfloor+\lfloor j \beta\rfloor+\lfloor k(\alpha+\beta)\rfloor
$$

holds for all real numbers α, β if and only if $j=k$.
Problem 4 Let $A B C D$ be a square with side 20 and $T_{1}, T_{2}, \ldots, T_{2000}$ are points in $A B C D$ such that no 3 points in the set $S=\left\{A, B, C, D, T_{1}, T_{2}, \ldots, T_{2000}\right\}$ are collinear. Prove that there exists a triangle with vertices in S, such that the area is less than $1 / 10$.

- $\quad 3 r d$ Grade

AoPS Community

2000 Croatia National Olympiad

Problem 1 Let B and C be fixed points, and let A be a variable point such that $\angle B A C$ is fixed. The midpoints of $A B$ and $A C$ are D and E respectively, and F, G are points such that $D F \perp A B$, $E G \perp A C$ and $B F$ and $C G$ are perpendicular to $B C$. Prove that $B F \cdot C G$ remains constant as A varies.

Problem 2 Find all 5 -tuples of different four-digit integers with the same initial digit such that the sum of the five numbers is divisible by four of them.

Problem 3 A plane intersects a rectangular parallelepiped in a regular hexagon. Prove that the rectangular parallelepiped is a cube.

Problem 4 If $n \geq 2$ is an integer, prove the equality

$$
\left\lfloor\log _{2} n\right\rfloor+\left\lfloor\log _{3} n\right\rfloor+\ldots+\left\lfloor\log _{n} n\right\rfloor=\lfloor\sqrt{n}\rfloor+\lfloor\sqrt[3]{n}\rfloor+\ldots+\lfloor\sqrt[n]{n}\rfloor .
$$

- \quad 4th Grade

Problem 1 Let \mathcal{P} be the parabola $y^{2}=2 p x$, and let T_{0} be a point on it. Point T_{0}^{\prime} is such that the midpoint of the segment $T_{0} T_{0}^{\prime}$ lies on the axis of the parabola. For a variable point T on \mathcal{P}, the perpendicular from T_{0}^{\prime} to the line $T_{0} T$ intersects the line through T parallel to the axis of \mathcal{P} at a point T^{\prime}. Find the locus of T^{\prime}.

Problem 2 Let $A B C$ be a triangle with $A B=A C$. With center in a point of the side $B C$, the circle S is constructed that is tangent to the sides $A B$ and $A C$. Let P and Q be any points on the sides $A B$ and $A C$ respectively, such that $P Q$ is tangent to S. Show that $P B \cdot C Q=\left(\frac{B C}{2}\right)^{2}$

Problem 3 Let $n \geq 3$ positive integers a_{1}, \ldots, a_{n} be written on a circle so that each of them divides the sum of its two neighbors. Let us denote

$$
S_{n}=\frac{a_{n}+a_{2}}{a_{1}}+\frac{a_{1}+a_{3}}{a_{2}}+\ldots+\frac{a_{n-2}+a_{n}}{a_{n-1}}+\ldots+\frac{a_{n-1}+a_{1}}{a_{n}} .
$$

Determine the minimum and maximum values of S_{n}.
Problem 4 Let S be the set of all squarefree numbers and n be a natural number. Prove that

$$
\sum_{k \in S}\left\lfloor\sqrt{\frac{n}{k}}\right\rfloor=n
$$

