

AoPS Community

2000 Croatia National Olympiad

www.artofproblemsolving.com/community/c2000045

by jasperE3, Babai, parmenides51

1st Grade

Problem 1 Find all positive integer solutions x, y, z such that 1/x + 2/y - 3/z = 1

- **Problem 2** The incircle of a triangle *ABC* touches *BC*, *CA*, *AB* at *A*₁, *B*₁, *C*₁, respectively. Find the angles of $\triangle A_1B_1C_1$ in terms of the angles of $\triangle ABC$.
- **Problem 3** Let m > 1 be an integer. Determine the number of positive integer solutions of the equation $\lfloor \frac{x}{m} \rfloor = \left| \frac{x}{m-1} \right|$.
- **Problem 4** We are given coins of 1, 2, 5, 10, 20, 50 lipas and of 1 kuna (Croatian currency: 1 kuna = 100 lipas). Prove that if a bill of M lipas can be paid by N coins, then a bill of N kunas can be paid by M coins.

2nd Grade

_

Problem 1 Let a > 0 and x_1, x_2, x_3 be real numbers with $x_1 + x_2 + x_3 = 0$. Prove that

 $\log_2\left(1+a^{x_1}\right) + \log_2\left(1+a^{x_2}\right) + \log_2\left(1+a^{x_3}\right) \ge 3.$

Problem 2 Two squares ACXE and CBDY are constructed in the exterior of an acute-angled triangle ABC. Prove that the intersection of the lines AD and BE lies on the altitude of the triangle from C.

Problem 3 Let *j* and *k* be integers. Prove that the inequality

 $\lfloor (j+k)\alpha \rfloor + \lfloor (j+k)\beta \rfloor \geq \lfloor j\alpha \rfloor + \lfloor j\beta \rfloor + \lfloor k(\alpha+\beta) \rfloor$

holds for all real numbers α, β if and only if j = k.

Problem 4 Let *ABCD* be a square with side 20 and $T_1, T_2, ..., T_{2000}$ are points in *ABCD* such that no 3 points in the set $S = \{A, B, C, D, T_1, T_2, ..., T_{2000}\}$ are collinear. Prove that there exists a triangle with vertices in *S*, such that the area is less than 1/10.

- 3rd Grade

AoPS Community

2000 Croatia National Olympiad

Problem 1 Let *B* and *C* be fixed points, and let *A* be a variable point such that $\angle BAC$ is fixed. The midpoints of *AB* and *AC* are *D* and *E* respectively, and *F*, *G* are points such that $DF \perp AB$, $EG \perp AC$ and BF and CG are perpendicular to *BC*. Prove that $BF \cdot CG$ remains constant as *A* varies.

Problem 2 Find all 5-tuples of different four-digit integers with the same initial digit such that the sum of the five numbers is divisible by four of them.

Problem 3 A plane intersects a rectangular parallelepiped in a regular hexagon. Prove that the rectangular parallelepiped is a cube.

Problem 4 If $n \ge 2$ is an integer, prove the equality

$$\lfloor \log_2 n \rfloor + \lfloor \log_3 n \rfloor + \ldots + \lfloor \log_n n \rfloor = \lfloor \sqrt{n} \rfloor + \lfloor \sqrt[3]{n} \rfloor + \ldots + \lfloor \sqrt[n]{n} \rfloor.$$

4th Grade

- **Problem 1** Let \mathcal{P} be the parabola $y^2 = 2px$, and let T_0 be a point on it. Point T'_0 is such that the midpoint of the segment $T_0T'_0$ lies on the axis of the parabola. For a variable point T on \mathcal{P} , the perpendicular from T'_0 to the line T_0T intersects the line through T parallel to the axis of \mathcal{P} at a point T'. Find the locus of T'.
- **Problem 2** Let *ABC* be a triangle with AB = AC. With center in a point of the side *BC*, the circle *S* is constructed that is tangent to the sides *AB* and *AC*. Let *P* and *Q* be any points on the sides *AB* and *AC* respectively, such that *PQ* is tangent to *S*. Show that $PB \cdot CQ = \left(\frac{BC}{2}\right)^2$
- **Problem 3** Let $n \ge 3$ positive integers a_1, \ldots, a_n be written on a circle so that each of them divides the sum of its two neighbors. Let us denote

$$S_n = \frac{a_n + a_2}{a_1} + \frac{a_1 + a_3}{a_2} + \ldots + \frac{a_{n-2} + a_n}{a_{n-1}} + \ldots + \frac{a_{n-1} + a_1}{a_n}.$$

Determine the minimum and maximum values of S_n .

Problem 4 Let *S* be the set of all squarefree numbers and *n* be a natural number. Prove that

$$\sum_{k \in S} \left\lfloor \sqrt{\frac{n}{k}} \right\rfloor = n$$

Art of Problem Solving is an ACS WASC Accredited School.

🔞 AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱