AoPS Community

www.artofproblemsolving.com/community/c2000132
by jasperE3, Megus, Amir.S

- \quad Test 1

Problem 1 Let N be a positive integer greater than 2. We number the vertices of a regular 2 n -gon clockwise with the numbers $1,2, \ldots, \mathrm{~N}, \mathrm{~N}, \mathrm{~N}+$ $1, \ldots, 2,1$. Then we proceed to mark the vertices in the following way. In the first step we mark the vertex 1 . If ni is the vertex marked in the i-th step, in the i+1-th step we mark the vertex that is -ni- vertices away from vertex ni, counting clockwise if ni is positive and counter-clockwise if $n i$ is negative. This procedure is repeated till we reach a vertex that has already been marked. Let $f(N)$ be the number of non-marked vertices.
(a) If $f(N)=0$, prove that $2 \mathrm{~N}+1$ is a prime number.
(b) Compute $f(1997)$.

Problem 2 Suppose that S is a finite set of real numbers with the property that any two distinct elements of S form an arithmetic progression with another element in S. Give an example of such a set with 5 elements and show that no such set exists with more than 5 elements.

Problem 3 Let \mathbb{N} be the set of positive integers. Find all functions defined on \mathbb{N} and taking values on \mathbb{N} satisfying, for all $n \in \mathbb{N}$,

$$
f(n)+f(n+1)=f(n+2) f(n+3)-1998
$$

Problem 4 Let L be a circle with center O and tangent to sides $A B$ and $A C$ of a triangle $A B C$ in points E and F, respectively. Let the perpendicular from O to $B C$ meet $E F$ at D. Prove that A, D and M are collinear, where M is the midpoint of $B C$.

Problem 5 Consider k positive integers $a_{1}, a_{2}, \ldots, a_{k}$ satisfying $1 \leq a_{1}<a_{2}<\ldots<a_{k} \leq n$ and $\operatorname{lcm}\left(a_{i}, a_{j}\right) \leq n$ for any i, j. Prove that

$$
k \leq 2\lfloor\sqrt{n}\rfloor .
$$

- \quad Test 2

Problem 1 Let $A B C$ be an acute-angled triangle. Construct three semi-circles, each having a different side of ABC as diameter, and outside $A B C$. The perpendiculars dropped from A, B, C to
the opposite sides intersect these semi-circles in points E, F, G, respectively. Prove that the hexagon $A G B E C F$ can be folded so as to form a pyramid having $A B C$ as base.

Problem 2 There are $n \geq 3$ integers around a circle. We know that for each of these numbers the ratio between the sum of its two neighbors and the number is a positive integer. Prove that the sum of the n ratios is not greater than $3 n$.

Problem 3 Show that it is possible to color the points of $\mathbb{Q} \times \mathbb{Q}$ in two colors in such a way that any two points having distance 1 have distinct colors.

Problem 4 (a) Show that, for each positive integer n, the number of monic polynomials of degree n with integer coefficients having all its roots on the unit circle is finite.
(b) Let $P(x)$ be a monic polynomial with integer coefficients having all its roots on the unit circle. Show that there exists a positive integer m such that $y^{m}=1$ for each root y of $P(x)$.

Problem 5 Let p be an odd prime integer and k a positive integer not divisible by $p, 1 \leq k<2(p+1)$, and let $N=2 k p+1$. Prove that the following statements are equivalent:
(i) N is a prime number
(ii) there exists a positive integer $a, 2 \leq a<n$, such that $a^{k p}+1$ is divisible by N and $\operatorname{gcd}\left(a^{k}+1, N\right)=1$.

