Art of Problem Solving

Final Round - 2021 Korea

www.artofproblemsolving.com/community/c2000695
by chrono223, Olympiadium, KPBY0507

Part 1
P1 An acute triangle $\triangle A B C$ and its incenter I, circumcenter O is given. The line that is perpendicular to $A I$ and passes I intersects with $A B, A C$ in D, E. The line that is parallel to $B I$ and passes D and the line that is parallel to $C I$ and passes E intersects in F. Denote the circumcircle of $D E F$ as ω, and its center as $K . \omega$ and $F I$ intersect in $P(\neq F)$. Prove that O, K, P is collinear.

P2 Positive integer $k(\geq 8)$ is given. Prove that if there exists a pair of positive integers (x, y) that satisfies the conditions below, then there exists infinitely many pairs (x, y).
(1) $x\left|y^{2}-3, y\right| x^{2}-2$
(2) $\operatorname{gcd}\left(3 x+\frac{2\left(y^{2}-3\right)}{x}, 2 y+\frac{3\left(x^{2}-2\right)}{y}\right)=k$

P3 Let P be a set of people. For two people A and B, if A knows B, B also knows A. Each person in P knows 2 or less people in the set. S, a subset of P with k people, is called \boldsymbol{k}-independent set of P if any two people in S don't know each other. $X_{1}, X_{2}, \ldots, X_{4041}$ are 2021-independent sets of P (not necessarily distinct). Show that there exists a 2021-independent set of $P,\left\{v_{1}, v_{2}, \ldots, v_{2021}\right\}$, which satisfies the following condition:

For some integer $1 \leq i_{1}<i_{2}<\cdots<i_{2021} \leq 4041, v_{1} \in X_{i_{1}}, v_{2} \in X_{i_{2}}, \ldots, v_{2021} \in X_{i_{2021}}$

Thanks to Evan Chen, here's a graph wording of the problem :)
Let G be a finite simple graph with maximum degree at most 2 . Let $X_{1}, X_{2}, \ldots, X_{4041}$ be independent sets of size 2021 (not necessarily distinct). Prove that there exists another independent set $\left\{v_{1}, v_{2}, \ldots, v_{2021}\right\}$ of size 2021 and indices $1 \leq t_{1}<t_{2}<\cdots<t_{2021} \leq 4041$ such that $v_{i} \in X_{t_{i}}$ for all i.

Part 2

P4 There are $n(\geq 2)$ clubs $A_{1}, A_{2}, \ldots A_{n}$ in Korean Mathematical Society. Prove that there exist $n-1$ sets $B_{1}, B_{2}, \ldots B_{n-1}$ that satisfy the condition below.
(1) $A_{1} \cup A_{2} \cup \cdots A_{n}=B_{1} \cup B_{2} \cup \cdots B_{n-1}$
(2) for any $1 \leq i<j \leq n-1, B_{i} \cap B_{j}=\emptyset,-1 \leq\left|B_{i}\right|-\left|B_{j}\right| \leq 1$
(3) for any $1 \leq i \leq n-1$, there exist $A_{k}, A_{j}(1 \leq k \leq j \leq n)$ such that $B_{i} \subseteq A_{k} \cup A_{j}$

P5 The incenter and A-excenter of $\triangle A B C$ is I and O. The foot from A, I to $B C$ is D and E. The intersection of $A D$ and $E O$ is X. The circumcenter of $\triangle B X C$ is P.
Show that the circumcircle of $\triangle B P C$ is tangent to the A-excircle if X is on the incircle of $\triangle A B C$.

P6 Find all functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that satisfies

$$
f\left(x^{2}-g(y)\right)=g(x)^{2}-y
$$

for all $x, y \in \mathbb{R}$
Timeline $3 \mathrm{~h} / 3 \mathrm{~h}$

