

AoPS Community

2021 Korea - Final Round

Final Round - 2021 Korea

www.artofproblemsolving.com/community/c2000695 by chrono223, Olympiadium, KPBY0507

Part 1

0

- **P1** An acute triangle $\triangle ABC$ and its incenter *I*, circumcenter *O* is given. The line that is perpendicular to *AI* and passes *I* intersects with *AB*, *AC* in *D*,*E*. The line that is parallel to *BI* and passes *D* and the line that is parallel to *CI* and passes *E* intersects in *F*. Denote the circumcircle of *DEF* as ω , and its center as *K*. ω and *FI* intersect in *P*(\neq *F*). Prove that *O*, *K*, *P* is collinear.
- **P2** Positive integer $k(\ge 8)$ is given. Prove that if there exists a pair of positive integers (x, y) that satisfies the conditions below, then there exists infinitely many pairs (x, y). (1) $x | y^2 - 3, y | x^2 - 2$ (2) $gcd \left(3x + \frac{2(y^2 - 3)}{x}, 2y + \frac{3(x^2 - 2)}{y}\right) = k$
- **P3** Let *P* be a set of people. For two people *A* and *B*, if *A* knows *B*, *B* also knows *A*. Each person in *P* knows 2 or less people in the set. *S*, a subset of *P* with *k* people, is called *k-independent set* of *P* if any two people in *S* don't know each other. $X_1, X_2, \ldots, X_{4041}$ are **2021-independent set**s of *P* (not necessarily distinct). Show that there exists a **2021-independent set** of *P*, { $v_1, v_2, \ldots, v_{2021}$ }, which satisfies the following condition:

For some integer $1 \le i_1 < i_2 < \dots < i_{2021} \le 4041$, $v_1 \in X_{i_1}, v_2 \in X_{i_2}, \dots, v_{2021} \in X_{i_{2021}}$

Thanks to Evan Chen, here's a graph wording of the problem :)

Let *G* be a finite simple graph with maximum degree at most 2. Let $X_1, X_2, \ldots, X_{4041}$ be independent sets of size 2021 (not necessarily distinct). Prove that there exists another independent set $\{v_1, v_2, \ldots, v_{2021}\}$ of size 2021 and indices $1 \le t_1 < t_2 < \cdots < t_{2021} \le 4041$ such that $v_i \in X_{t_i}$ for all *i*.

Part	Z
Ρ4	There are $n(\geq 2)$ clubs $A_1, A_2,, A_n$ in Korean Mathematical Society. Prove that there exist $n-1$ sets $B_1, B_2,, B_{n-1}$ that satisfy the condition below. (1) $A_1 \cup A_2 \cup \cdots A_n = B_1 \cup B_2 \cup \cdots B_{n-1}$ (2) for any $1 \leq i < j \leq n-1$, $B_i \cap B_j = \emptyset$, $-1 \leq B_i - B_j \leq 1$ (3) for any $1 \leq i \leq n-1$ there exist $A_i \in A_i \cap A_i \leq k \leq i \leq n$ such that $B_i \subseteq A_i \cup A_i$.
	(3) for any $1 \le i \le n-1$, there exist $A_k, A_j (1 \le k \le j \le n)$ such that $B_i \subseteq A_k \cup A_j$

AoPS Community

- **P5** The incenter and *A*-excenter of $\triangle ABC$ is *I* and *O*. The foot from *A*, *I* to *BC* is *D* and *E*. The intersection of *AD* and *EO* is *X*. The circumcenter of $\triangle BXC$ is *P*. Show that the circumcircle of $\triangle BPC$ is tangent to the *A*-excircle if *X* is on the incircle of $\triangle ABC$.
- **P6** Find all functions $f, g : \mathbb{R} \to \mathbb{R}$ such that satisfies

$$f(x^2 - g(y)) = g(x)^2 - y$$

for all $x, y \in \mathbb{R}$

Timeline 3h/3h

