Art of Problem Solving

AoPS Community

www.artofproblemsolving.com/community/c2000828
by jasperE3, Konigsberg, elegant

- \quad Grade 8
- Day 1

Problem 1 Solve the system of equations $2|x|+|y|=1,\lfloor|x|\rfloor+\lfloor 2|y|\rfloor=2$.
Problem 2 Is it possible to write numbers in the cells of a 7×7 board in such a way that the sum of numbers in every 2×2 or 3×3 square is divisible by 1999, but the sum of all numbers in the board is not divisible by 1999?

Problem 3 Is there a 2000-digit number which is a perfect square and 1999 of whose digits are fives?

- Day 2

Problem 4 Same as part (b) of Grade 11 Problem 5
Problem 5 Let N be the point inside a rhombus $A B C D$ such that the triangle $B N C$ is equilateral. The bisector of $\angle A B N$ meets the diagonal $A C$ at K. Show that $B K=K N+N D$.

Problem 6 Consider the figure consisting of 19 hexagonal cells, as shown in the picture. At the cell A, there is a piece that is allowed to move one cell up, up-right, or down-right. How many ways are there for the piece to reach the cell B, not passing through the cell C ? https://services.artofproblemsolving.com/download.php?id=YXROYWNobWVudHMvZi9mL2Y4MWY5NGM $=\backslash \& r n=V W t y Y W l u Z S A x O T k 5 L n B u Z w==$

- \quad Grade 9

- Day 1

Problem 1 Describe the region in the coordinate plane defined by $\left|x^{2}+x y\right| \geq\left|x^{2}-x y\right|$.
Problem 2 Let x and y be positive real numbers with $(x-1)(y-1) \geq 1$. Prove that for sides a, b, c of an arbitrary triangle we have $a^{2} x+b^{2} y>c^{2}$.

Problem 3 Show that the number $9999999+1999000$ is composite.
Problem 4 The bisectors of angles A, B, C of a triangle $A B C$ intersect the circumcircle of the triangle at A_{1}, B_{1}, C_{1}, respectively. Let P be the intersection of the lines $B_{1} C_{1}$ and $A B$, and Q be the
intersection of the lines $B_{1} A_{1}$ and $B C$. Show how to construct the triangle $A B C$ by a ruler and a compass, given its circumcircle, points P and Q, and the halfplane determined by $P Q$ in which point B lies.

```
- Day 2
```

Problem 5 Solve the equation $\lfloor x\rfloor+\frac{1999}{\lfloor x\rfloor}=\{x\}+\frac{1999}{\{x\}}$.
Problem 6 Find all pairs (k, l) of positive integers such that $\frac{k^{l}}{l^{k}}=\frac{k!}{l!}$.
Problem 7 Let M be a fixed point inside a given circle. Two perpendicular chords $A C$ and $B D$ are drawn through M, and K and L are the midpoints of $A B$ and $C D$, respectively. Prove that the quantity $A B^{2}+C D^{2}-2 K L^{2}$ is independent of the chords $A C$ and $B D$.

Problem 8 A sequence of natural numbers $\left(a_{n}\right)$ satisfies $a_{a_{n}}+a_{n}=2 n$ for all $n \in \mathbb{N}$. Prove that $a_{n}=n$.

- Grade 10
- Day 1

Problem 1 Solve the equation $\sin x \sin 2 x \sin 3 x+\cos x \cos 2 x \cos 3 x=1$.
Problem 2 Let M be a point inside a triangle $A B C$. The line through M parallel to $A C$ meets $A B$ at N and $B C$ at K. The lines through M parallel to $A B$ and $B C$ meet $A C$ at D and L, respectively. Another line through M intersects the sides $A B$ and $B C$ at P and R respectively such that $P M=M R$. Given that the area of $\triangle A B C$ is S and that $\frac{C K}{C B}=a$, compute the area of $\triangle P Q R$.

Problem 3 Missing

Problem 4 Two players alternately write integers on a blackboard as follows: the first player writes a_{1} arbitrarily, then the second player writes a_{2} arbitrarily, and thereafter a player writes a number that is equal to the sum of the two preceding numbers. The player after whose move the obtained sequence contains terms such that $a_{i}-a_{j}$ and $a_{i+1}-a_{j+1}(i \neq j)$ are divisible by 1999, wins the game. Which of the players has a winning strategy?

- Day 2

Problem 5 Evaluate

$$
\lfloor\pi\rfloor+\left\lfloor\frac{\lfloor 2 \pi\rfloor}{2}\right\rfloor+\left\lfloor\frac{\lfloor 3 \pi\rfloor}{3}\right\rfloor+\ldots+\left\lfloor\frac{\lfloor 1999 \pi\rfloor}{1999}\right\rfloor .
$$

AoPS Community

Problem 6 Solve the equation $m^{3}-n^{3}=7 m n+5$ in positive integers.
Problem 7 If $x_{1}, x_{2}, \ldots, x_{6} \in[0,1]$, prove that the cyclic sum of $\frac{x_{1}^{3}}{x_{2}^{5}+x_{3}^{5}+x_{4}^{5}+x_{5}^{5}+x_{6}^{5}+5}$ is less than $\frac{3}{5}$.

Problem 8 Let $A A_{1}, B B_{1}, C C_{1}$ be the altitudes of an acute-angled triangle $A B C$, and let O be an arbitrary interior point. Let M, N, P, Q, R, S be the feet of the perpendiculars from O to the lines $A A_{1}, B C, B B_{1}, C A, C C_{1}, A B$, respectively. Prove that the lines $M N, P Q, R S$ are concurrent.

- \quad Grade 11

- Day 1

Problem 1 Solve the equation

$$
(\sin x)^{1998}+(\cos x)^{-1999}=(\cos x)^{1998}+(\sin x)^{-1999}
$$

Problem 2 Find all values of the parameter k for which the system of inequalities

$$
\begin{aligned}
& k y^{2}+4 k y-2 x+6 k+3 \leq 0 \\
& k x^{2}-2 y-2 k x+3 k-3 \leq 0
\end{aligned}
$$

has a unique solution.
Problem 3 All faces of a parallelepiped $A B C D A_{1} B_{1} C_{1} D_{1}$ are rhombi, and their angles at A are all equal to α. Points M, N, P, Q are selected on the edges $A_{1} B_{1}, D C, B C, A_{1} D_{1}$, respectively, such that $A_{1} M=B P$ and $D N=A_{1} Q$. Find the angle between the intersection lines of the plane $A_{1} B D$ with the planes $A M N$ and $A P Q$.

Problem 4 Same as Grade 10 Problem 4.

```
- Day 2
```

Problem 5 Can the number (a)19991998 (b)19991999 be written in the form $n^{4}+m^{3}-m$, where n , m are integers?

Problem 6 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x y)+f(x z)-f(x) f(y z) \geq 1 \quad \text { for all } x, y, z .
$$

Problem 7 Suppose that the function $f(x)=\tan \left(a_{1} x+1\right)+\ldots+\tan \left(a_{10} x+1\right)$ has the period $T>0$, where a_{1}, \ldots, a_{10} are positive numbers. Prove that

$$
T \geq \frac{\pi}{10} \min \left\{\frac{1}{a_{1}}, \ldots, \frac{1}{a_{10}}\right\}
$$

Problem 8 Same as Grade 10 Problem 8.

