Art of Problem Solving

AoPS Community

www.artofproblemsolving.com/community/c2001157
by jasperE3, Jumbler

- \quad Test 1

Problem 1 Let $A B C$ be a triangle and L its circumscribed circle. The internal bisector of angle A meets $B C$ at point P. Let L_{1} be the circle tangent to $A P, B P$ and L. Similarly, let L_{2} be the circle tangent to $A P, C P$ and L. Prove that the tangency points of L_{1} and L_{2} with $A P$ coincide.

Problem 2 We say that a subset A of \mathbb{N} is good if for some positive integer n, the equation $x-y=n$ admits infinitely many solutions with $x, y \in A$. If $A_{1}, A_{2}, \ldots, A_{100}$ are sets whose union is \mathbb{N}, prove that at least one of the $A_{i} \mathrm{~s}$ is good.

Problem 3 Find all positive integers $x>1, y$ and primes p, q such that $p^{x}=2^{y}+q^{x}$
Problem 4 Prove that it is impossible to arrange the numbers $1,2, \ldots, 1997$ around a circle in such a way that, if x and y are any two neighboring numbers, then $499 \leq|x-y| \leq 997$.

Problem 5 Let $A B C$ be an acute-angled triangle with incenter I. Consider the point A_{1} on $A I$ different from A, such that the midpoint of $A A_{1}$ lies on the circumscribed circle of $A B C$. Points B_{1} and C_{1} are defined similarly.
(a) Prove that $S_{A_{1} B_{1} C_{1}}=(4 R+r) p$, where p is the semi-perimeter, R is the circumradius and r is the inradius of $A B C$.
(b) Prove that $S_{A_{1} B_{1} C_{1}} \geq 9 S_{A B C}$.

- \quad Test 2

Problem 1 In an isosceles triangle $A B C(A C=B C)$, let O be its circumcenter, D the midpoint of $A C$ and E the centroid of $D B C$. Show that $O E$ is perpendicular to $B D$.

Problem 2 Prove that any group of people can be divided into two disjoint groups A and B such that any member from A has at least half of his acquaintances in B and any member from B has at least half of his acquaintances in A (acquaintance is reciprocal).

Problem 3 Let b be a positive integer such that $\operatorname{gcd}(b, 6)=1$. Show that there are positive integers x and y such that $\frac{1}{x}+\frac{1}{y}=\frac{3}{b}$ if and only if b is divisible by some prime number of form $6 k-1$.

Problem 4 Consider an $N \times N$ matrix, where N is an odd positive integer, such that all its entries are $-1,0$ or 1 . Consider the sum of the numbers in every line and every column. Prove that at least two of the $2 N$ sums are equal.

Problem 5 Consider an infinite strip, divided into unit squares. A finite number of nuts is placed in some of these squares. In a step, we choose a square A which has more than one nut and take one of them and put it on the square on the right, take another nut (from A) and put it on the square on the left. The procedure ends when all squares has at most one nut. Prove that, given the initial configuration, any procedure one takes will end after the same number of steps and with the same final configuration.

