Art of Problem Solving

AoPS Community

National Math Olympiad (Second Round) 2021

www.artofproblemsolving.com/community/c2004810
by Tintarn, Yaghi

- Day 1

1 There are two distinct Points A and B on a line. We color a point P on segment $A B$, distinct from A, B and midpoint of segment $A B$ to red. In each move, we can reflect one of the red point wrt A or B and color the midpoint of the resulting point and the point we reflected from (which is one of A or B) to red. For example, if we choose P and the reflection of P wrt to A is P^{\prime}, then midpoint of $A P^{\prime}$ would be red. Is it possible to make the midpoint of $A B$ red after a finite number of moves?

2 Call a positive integer n "Fantastic" if none of its digits are zero and it is possible to remove one of its digits and reach to an integer which is a divisor of n. (for example, 25 is fantastic , as if we remove digit 2 , resulting number would be 5 which is divisor of 25) Prove that the number of Fantastic numbers is finite.
$3 \quad$ Circle ω is inscribed in quadrilateral $A B C D$ and is tangent to segments $B C, A D$ at E, F, respectively. $D E$ intersects ω for the second time at X. if the circumcircle of triangle $D F X$ is tangent to lines $A B$ and $C D$, prove that quadrilateral $A F X C$ is cyclic.

- Day 2
$4 \quad n$ points are given on a circle ω. There is a circle with radius smaller than ω such that all these points lie inside or on the boundary of this circle. Prove that we can draw a diameter of ω with endpoints not belonging to the given points such that all the n given points remain in one side of the diameter.

51400 real numbers are given. Prove that one can choose three of them like x, y, z such that :

$$
\left|\frac{(x-y)(y-z)(z-x)}{x^{4}+y^{4}+z^{4}+1}\right|<0.009
$$

6 Is it possible to arrange 1400 positive integer (not necessarily distinct) , at least one of them being 2021 , around a circle such that any number on this circle equals to the sum of gcd of the two previous numbers and two next numbers? for example, if a, b, c, d, e are five consecutive numbers on this circle,$c=\operatorname{gcd}(a, b)+\operatorname{gcd}(d, e)$

