AoPS Community

2021 Romania Team Selection Test

Romania Team Selection Test 2021

www.artofproblemsolving.com/community/c2005002
by Tintarn, oVlad, emregirgin35

- \quad Day 1

1 Let $k>1$ be a positive integer. A set S is called good if there exists a colouring of the positive integers with k colours, such that no element from S can be written as the sum of two distinct positive integers having the same colour. Find the greatest positive integer t (in terms of k) for which the set

$$
S=\{a+1, a+2, \ldots, a+t\}
$$

is good, for any positive integer a.
2 For any positive integer $n>1$, let $p(n)$ be the greatest prime factor of n. Find all the triplets of distinct positive integers (x, y, z) which satisfy the following properties: x, y and z form an arithmetic progression, and $p(x y z) \leq 3$.

3 The external bisectors of the angles of the convex quadrilateral $A B C D$ intersect each other in E, F, G and H such that $A \in E H, B \in E F, C \in F G, D \in G H$. We know that the perpendiculars from E to $A B$, from F to $B C$ and from G to $C D$ are concurrent. Prove that $A B C D$ is cyclic.

4 Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfy the following relationship for all real numbers x and y

$$
f(x f(y)-f(x))=2 f(x)+x y .
$$

- Day 2

$1 \quad$ Find all pairs (m, n) of positive odd integers, such that $n \mid 3 m+1$ and $m \mid n^{2}+3$.
2 Consider the set $M=\{1,2,3, \ldots, 2020\}$. Find the smallest positive integer k such that for any subset A of M with k elements, there exist 3 distinct numbers a, b, c from M such that $a+b, b+c$ and $c+a$ are all in A.
$3 \quad$ Let \mathcal{P} be a convex quadrilateral. Consider a point X inside \mathcal{P}. Let M, N, P, Q be the projections of X on the sides of \mathcal{P}. We know that M, N, P, Q all sit on a circle of center L. Let J and K be the midpoints of the diagonals of \mathcal{P}. Prove that J, K and L lie on a line.

- Day 3

1 Consider a fixed triangle $A B C$ such that $A B=A C$. Let M be the midpoint of $B C$. Let P be a variable point inside $\triangle A B C$, such that $\angle P B C=\angle P C A$. Prove that the sum of the measures of $\angle B P M$ and $\angle A P C$ is constant.

2 Let $N \geq 4$ be a fixed positive integer. Two players, A and B are forming an ordered set $\left\{x_{1}, x_{2}, \ldots\right\}$, adding elements alternatively. A chooses x_{1} to be 1 or -1 , then B chooses x_{2} to be 2 or -2 , then A chooses x_{3} to be 3 or -3 , and so on. (at the $k^{\text {th }}$ step, the chosen number must always be k or $-k$)
The winner is the first player to make the sequence sum up to a multiple of N. Depending on N, find out, with proof, which player has a winning strategy.

3 Let α be a real number in the interval $(0,1)$. Prove that there exists a sequence $\left(\varepsilon_{n}\right)_{n \geq 1}$ where each term is either 0 or 1 such that the sequence $\left(s_{n}\right)_{n \geq 1}$

$$
s_{n}=\frac{\varepsilon_{1}}{n(n+1)}+\frac{\varepsilon_{2}}{(n+1)(n+2)}+\ldots+\frac{\varepsilon_{n}}{(2 n-1) 2 n}
$$

verifies the inequality

$$
0 \leq \alpha-2 n s_{n} \leq \frac{2}{n+1}
$$

for any $n \geq 2$.

