

AoPS Community

2021 Romania Team Selection Test

Romania Team Selection Test 2021

www.artofproblemsolving.com/community/c2005002 by Tintarn, oVlad, emregirgin35

– Day 1	
---------	--

1 Let k > 1 be a positive integer. A set *S* is called *good* if there exists a colouring of the positive integers with *k* colours, such that no element from *S* can be written as the sum of two distinct positive integers having the same colour. Find the greatest positive integer *t* (in terms of *k*) for which the set

$$S = \{a + 1, a + 2, \dots, a + t\}$$

is good, for any positive integer a.

- **2** For any positive integer n > 1, let p(n) be the greatest prime factor of n. Find all the triplets of distinct positive integers (x, y, z) which satisfy the following properties: x, y and z form an arithmetic progression, and $p(xyz) \le 3$.
- **3** The external bisectors of the angles of the convex quadrilateral ABCD intersect each other in E, F, G and H such that $A \in EH, B \in EF, C \in FG, D \in GH$. We know that the perpendiculars from E to AB, from F to BC and from G to CD are concurrent. Prove that ABCD is cyclic.
- 4 Determine all functions $f : \mathbb{R} \to \mathbb{R}$ which satisfy the following relationship for all real numbers x and y

$$f(xf(y) - f(x)) = 2f(x) + xy.$$

-	Day 2
1	Find all pairs (m, n) of positive odd integers, such that $n \mid 3m + 1$ and $m \mid n^2 + 3$.
2	Consider the set $M = \{1, 2, 3,, 2020\}$. Find the smallest positive integer k such that for any subset A of M with k elements, there exist 3 distinct numbers a, b, c from M such that $a+b, b+c$ and $c+a$ are all in A .
3	Let \mathcal{P} be a convex quadrilateral. Consider a point X inside \mathcal{P} . Let M, N, P, Q be the projections of X on the sides of \mathcal{P} . We know that M, N, P, Q all sit on a circle of center L . Let J and K be the midpoints of the diagonals of \mathcal{P} . Prove that J, K and L lie on a line.
-	Day 3

AoPS Community

2021 Romania Team Selection Test

- 1 Consider a fixed triangle ABC such that AB = AC. Let M be the midpoint of BC. Let P be a variable point inside $\triangle ABC$, such that $\angle PBC = \angle PCA$. Prove that the sum of the measures of $\angle BPM$ and $\angle APC$ is constant.
- 2 Let $N \ge 4$ be a fixed positive integer. Two players, A and B are forming an ordered set $\{x_1, x_2, ...\}$, adding elements alternatively. A chooses x_1 to be 1 or -1, then B chooses x_2 to be 2 or -2, then A chooses x_3 to be 3 or -3, and so on. (at the k^{th} step, the chosen number must always be k or -k)

The winner is the first player to make the sequence sum up to a multiple of N. Depending on N, find out, with proof, which player has a winning strategy.

3 Let α be a real number in the interval (0, 1). Prove that there exists a sequence $(\varepsilon_n)_{n\geq 1}$ where each term is either 0 or 1 such that the sequence $(s_n)_{n\geq 1}$

$$s_n = \frac{\varepsilon_1}{n(n+1)} + \frac{\varepsilon_2}{(n+1)(n+2)} + \ldots + \frac{\varepsilon_n}{(2n-1)2n}$$

verifies the inequality

$$0 \le \alpha - 2ns_n \le \frac{2}{n+1}$$

for any $n \geq 2$.

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱