

AoPS Community

1992 Bulgaria National Olympiad

Round 4

www.artofproblemsolving.com/community/c2005112 by jasperE3

– Day 1

Problem 1 Through a random point C_1 from the edge DC of the regular tetrahedron ABCD is drawn a plane, parallel to the plane ABC. The plane constructed intersects the edges DA and DBat the points A_1, B_1 respectively. Let the point H is the midpoint of the altitude through the vertex D of the tetrahedron $DA_1B_1C_1$ and M is the center of gravity (barycenter) of the triangle ABC_1 . Prove that the measure of the angle HMC doesnt depend on the position of the point C_1 . (Ivan Tonov)

Problem 2 Prove that there exists 1904-element subset of the set $\{1, 2, ..., 1992\}$, which doesn't contain an arithmetic progression consisting of 41 terms. *(lvan Tonov)*

Problem 3 Let m and n are fixed natural numbers and Oxy is a coordinate system in the plane. Find the total count of all possible situations of n+m-1 points $P_1(x_1, y_1), P_2(x_2, y_2), \ldots, P_{n+m-1}(x_{n+m-1}, y_{n+m-1})$ in the plane for which the following conditions are satisfied:

(i) The numbers x_i and y_i (i = 1, 2, ..., n + m - 1) are integers and $1 \le x_i \le n, 1 \le y_i \le m$. (ii) Every one of the numbers 1, 2, ..., n can be found in the sequence $x_1, x_2, ..., x_{n+m-1}$ and every one of the numbers 1, 2, ..., m can be found in the sequence $y_1, y_2, ..., y_{n+m-1}$. (iii) For every i = 1, 2, ..., n + m - 2 the line $P_i P_{i+1}$ is parallel to one of the coordinate axes. (*Ivan Gochev, Hristo Minchev*)

- Day 2
- **Problem 4** Let p be a prime number in the form p = 4k + 3. Prove that if the numbers x_0, y_0, z_0, t_0 are solutions of the equation $x^{2p} + y^{2p} + z^{2p} = t^{2p}$, then at least one of them is divisible by p. (*Plamen Koshlukov*)
- **Problem 5** Points D, E, F are midpoints of the sides AB, BC, CA of triangle ABC. Angle bisectors of the angles BDC and ADC intersect the lines BC and AC respectively at the points M and N, and the line MN intersects the line CD at the point O. Let the lines EO and FO intersect respectively the lines AC and BC at the points P and Q. Prove that CD = PQ. (Plamen Koshlukov)
- **Problem 6** There are given one black box and n white boxes (n is a random natural number). White boxes are numbered with the numbers 1, 2, ..., n. In them are put n balls. It is allowed the following rearrangement of the balls: if in the box with number k there are exactly k balls, that

AoPS Community

1992 Bulgaria National Olympiad

box is made empty - one of the balls is put in the black box and the other k - 1 balls are put in the boxes with numbers: 1, 2, ..., k - 1. (Ivan Tonov)

Act of Problem Solving is an ACS WASC Accredited School.