Art of Problem Solving

AoPS Community

Round 4

www.artofproblemsolving.com/community/c2005112
by jasperE3

- Day 1

Problem 1 Through a random point C_{1} from the edge $D C$ of the regular tetrahedron $A B C D$ is drawn a plane, parallel to the plane $A B C$. The plane constructed intersects the edges $D A$ and $D B$ at the points A_{1}, B_{1} respectively. Let the point H is the midpoint of the altitude through the vertex D of the tetrahedron $D A_{1} B_{1} C_{1}$ and M is the center of gravity (barycenter) of the triangle $A B C_{1}$. Prove that the measure of the angle $H M C$ doesnt depend on the position of the point C_{1}. (Ivan Tonov)

Problem 2 Prove that there exists 1904 -element subset of the set $\{1,2, \ldots, 1992\}$, which doesnt contain an arithmetic progression consisting of 41 terms. (Ivan Tonov)

Problem 3 Let m and n are fixed natural numbers and $O x y$ is a coordinate system in the plane. Find the total count of all possible situations of $n+m-1$ points $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right), \ldots, P_{n+m-1}\left(x_{n+m-1}, y_{n+m}\right.$ in the plane for which the following conditions are satisfied:
(i) The numbers x_{i} and $y_{i}(i=1,2, \ldots, n+m-1)$ are integers and $1 \leq x_{i} \leq n, 1 \leq y_{i} \leq m$.
(ii) Every one of the numbers $1,2, \ldots, n$ can be found in the sequence $x_{1}, x_{2}, \ldots, x_{n+m-1}$ and every one of the numbers $1,2, \ldots, m$ can be found in the sequence $y_{1}, y_{2}, \ldots, y_{n+m-1}$.
(iii) For every $i=1,2, \ldots, n+m-2$ the line $P_{i} P_{i+1}$ is parallel to one of the coordinate axes. (Ivan Gochev, Hristo Minchev)

- Day 2

Problem 4 Let p be a prime number in the form $p=4 k+3$. Prove that if the numbers $x_{0}, y_{0}, z_{0}, t_{0}$ are solutions of the equation $x^{2 p}+y^{2 p}+z^{2 p}=t^{2 p}$, then at least one of them is divisible by p. (Plamen Koshlukov)

Problem 5 Points D, E, F are midpoints of the sides $A B, B C, C A$ of triangle $A B C$. Angle bisectors of the angles $B D C$ and $A D C$ intersect the lines $B C$ and $A C$ respectively at the points M and N, and the line $M N$ intersects the line $C D$ at the point O. Let the lines $E O$ and $F O$ intersect respectively the lines $A C$ and $B C$ at the points P and Q. Prove that $C D=P Q$. (Plamen Koshlukov)

Problem 6 There are given one black box and n white boxes (n is a random natural number). White boxes are numbered with the numbers $1,2, \ldots, n$. In them are put n balls. It is allowed the following rearrangement of the balls: if in the box with number k there are exactly k balls, that
box is made empty - one of the balls is put in the black box and the other $k-1$ balls are put in the boxes with numbers: $1,2, \ldots, k-1$. (Ivan Tonov)

