Art of Problem Solving

AoPS Community

Bulgaria National Olympiad 2021

www.artofproblemsolving.com/community/c2005413
by Tintarn, Pitagar, DschinghisKhan

- Day 1

1 A city has 4 horizontal and $n \geq 3$ vertical boulevards which intersect at $4 n$ crossroads. The crossroads divide every horizontal boulevard into $n-1$ streets and every vertical boulevard into 3 streets. The mayor of the city decides to close the minimum possible number of crossroads so that the city doesn't have a closed path(this means that starting from any street and going only through open crossroads without turning back you can't return to the same street). a)Prove that exactly n crossroads are closed. b)Prove that if from any street you can go to any other street and none of the 4 corner crossroads are closed then exactly 3 crossroads on the border are closed(A crossroad is on the border if it lies either on the first or fourth horizontal boulevard, or on the first or the n-th vertical boulevard).

2 A point T is given on the altitude through point C in the acute triangle $A B C$ with circumcenter O, such that $\measuredangle T B A=\measuredangle A C B$. If the line $C O$ intersects side $A B$ at point K, prove that the perpendicular bisector of $A B$, the altitude through A and the segment $K T$ are concurrent.
$3 \quad$ Find all $f: R^{+} \rightarrow R^{+}$such that $f(f(x)+y) f(x)=f(x y+1) \forall x, y \in R^{+}$
@below: https://artofproblemsolving.com/community/c6h2254883_2020_imoc_problems

Feel free to start individual threads for the problems as usual

- Day 2

4 Two infinite arithmetic sequences with positive integers are given:

$$
a_{1}<a_{2}<a_{3}<\cdots ; b_{1}<b_{2}<b_{3}<\cdots
$$

It is known that there are infinitely many pairs of positive integers (i, j) for which $i \leq j \leq$ $i+2021$ and a_{i} divides b_{j}. Prove that for every positive integer i there exists a positive integer j such that a_{i} divides b_{j}.

5 Does there exist a set S of 100 points in a plane such that the center of mass of any 10 points in S is also a point in S ?

6 Point S is the midpoint of arc $A C B$ of the circumscribed circle k around triangle $A B C$ with $A C>B C$. Let I be the incenter of triangle $A B C$. Line $S I$ intersects k again at point T. Let D
be the reflection of I across T and M be the midpoint of side $A B$. Line $I M$ intersects the line through D, parallel to $A B$, at point E. Prove that $A E=B D$.

