2021 Pan-African

AoPS Community

Pan-African 2021

www.artofproblemsolving.com/community/c2011668 by Tintarn, anyone_42

-	Day 1
1	Let <i>n</i> be an integer greater than 3. A square of side length <i>n</i> is divided by lines parallel to each side into n^2 squares of length 1. Find the number of convex trapezoids which have vertices among the vertices of the n^2 squares of side length 1, have side lengths less than or equal 3 and have area equal to 2 Note: Parallelograms are trapezoids.
2	Let Γ be a circle, P be a point outside it, and A and B the intersection points between Γ and the tangents from P to Γ . Let K be a point on the line AB , distinct from A and B and let T be the second intersection point of Γ and the circumcircle of the triangle PBK . Also, let P' be the reflection of P in point A . Show that $\angle PBT = \angle P'KA$
3	Let $(a_i)_{i\in\mathbb{N}}$ and $(p_i)_{i\in\mathbb{N}}$ be two sequences of positive integers such that the following conditions hold: • $a_1 \ge 2$. • p_n is the smallest prime divisor of a_n for every integer $n \ge 1$ • $a_{n+1} = a_n + \frac{a_n}{p_n}$ for every integer $n \ge 1$ Prove that there is a positive integer N such that $a_{n+3} = 3a_n$ for every integer $n > N$
-	Day 2
4	Find all integers m and n such that $\frac{m^2+n}{n^2-m}$ and $\frac{n^2+m}{m^2-n}$ are both integers.
5	Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that $\forall x, y \in \mathbb{R}$:
	$(f(x) + y)(f(y) + x) = f(x^2) + f(y^2) + 2f(xy)$

6 Let ABCD be a trapezoid which is not a parallelogram, such that AD is parallel to BC. Let $O = BD \cap AC$ and S be the second intersection of the circumcircles of triangles AOB and DOC.

Prove that the circumcircles of triangles ASD and BSC are tangent.

AoPS Online AoPS Academy AoPS Catery