AoPS Community

Pan-African 2021

www.artofproblemsolving.com/community/c2011668
by Tintarn, anyone_-42

- Day 1

1 Let n be an integer greater than 3. A square of side length n is divided by lines parallel to each side into n^{2} squares of length 1 . Find the number of convex trapezoids which have vertices among the vertices of the n^{2} squares of side length 1 , have side lengths less than or equal 3 and have area equal to 2
Note: Parallelograms are trapezoids.
2 Let Γ be a circle, P be a point outside it, and A and B the intersection points between Γ and the tangents from P to Γ. Let K be a point on the line $A B$, distinct from A and B and let T be the second intersection point of Γ and the circumcircle of the triangle $P B K$. Also, let P^{\prime} be the reflection of P in point A.
Show that $\angle P B T=\angle P^{\prime} K A$
3 Let $\left(a_{i}\right)_{i \in \mathbb{N}}$ and $\left(p_{i}\right)_{i \in \mathbb{N}}$ be two sequences of positive integers such that the following conditions hold: $\bullet a_{1} \geq 2 \cdot p_{n}$ is the smallest prime divisor of a_{n} for every integer $n \geq 1 \bullet a_{n+1}=a_{n}+\frac{a_{n}}{p_{n}}$ for every integer $n \geq 1$
Prove that there is a positive integer N such that $a_{n+3}=3 a_{n}$ for every integer $n>N$

- Day 2

4 Find all integers m and n such that $\frac{m^{2}+n}{n^{2}-m}$ and $\frac{n^{2}+m}{m^{2}-n}$ are both integers.
$5 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\forall x, y \in \mathbb{R}$:

$$
(f(x)+y)(f(y)+x)=f\left(x^{2}\right)+f\left(y^{2}\right)+2 f(x y)
$$

6 Let $A B C D$ be a trapezoid which is not a parallelogram, such that $A D$ is parallel to $B C$.
Let $O=B D \cap A C$ and S be the second intersection of the circumcircles of triangles $A O B$ and DOC.
Prove that the circumcircles of triangles $A S D$ and $B S C$ are tangent.

