AoPS Community

www.artofproblemsolving.com/community/c2013439
by jasperE3

Problem 1 Determine all triples (x, y, z) of positive rational numbers with $x \leq y \leq z$ such that $x+y+$ $z, \frac{1}{x}+\frac{1}{y}+\frac{1}{z}$, and xyz are natural numbers.

Problem 2 A natural number n has exactly 1995 units in its binary representation. Show that n ! is divisible by 2^{n-1995}.

Problem 3 Let $S A B C D$ be a pyramid with the vertex S whose all edges are equal. Points M and N on the edges $S A$ and $B C$ respectively are such that $M N$ is perpendicular to both $S A$ and $B C$. Find the ratios $S M: M A$ and $B N: N C$.

