AoPS Community

www.artofproblemsolving.com/community/c2013465
by jasperE3

Problem 1 Let $p>2$ be a prime number. For $k=1,2, \ldots, p-1$ we denote by a_{k} the remainder when k^{p} is divided by p^{2}. Prove that

$$
a_{1}+a_{2}+\ldots+a_{p-1}=\frac{p^{3}-p^{2}}{2} .
$$

Problem 2 Find all polynomials $P_{n}(x)$ of the form

$$
P_{n}(x)=n!x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+(-1)^{n} n(n+1),
$$

with integer coefficients, such that its roots $x_{1}, x_{2}, \ldots, x_{n}$ satisfy $k \leq x_{k} \leq k+1$ for $k=$ $1,2, \ldots, n$.

Problem 3 Let there be given real numbers $x_{i}>1(i=1,2, \ldots, 2 n)$. Prove that the interval $[0,2]$ contains at most $\binom{2 n}{n}$ sums of the form $\alpha_{1} x_{1}+\ldots+\alpha_{2 n} x_{2 n}$, where $\alpha_{i} \in\{-1,1\}$ for all i.

