

AoPS Community

www.artofproblemsolving.com/community/c2013465 by jasperE3

Problem 1 Let p > 2 be a prime number. For k = 1, 2, ..., p - 1 we denote by a_k the remainder when k^p is divided by p^2 . Prove that

$$a_1 + a_2 + \ldots + a_{p-1} = \frac{p^3 - p^2}{2}.$$

Problem 2 Find all polynomials $P_n(x)$ of the form

$$P_n(x) = n!x^n + a_{n-1}x^{n-1} + \ldots + a_1x + (-1)^n n(n+1),$$

with integer coefficients, such that its roots x_1, x_2, \ldots, x_n satisfy $k \leq x_k \leq k+1$ for $k = 1, 2, \ldots, n$.

Problem 3 Let there be given real numbers $x_i > 1$ (i = 1, 2, ..., 2n). Prove that the interval [0, 2] contains at most $\binom{2n}{n}$ sums of the form $\alpha_1 x_1 + ... + \alpha_{2n} x_{2n}$, where $\alpha_i \in \{-1, 1\}$ for all i.

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🕬

1

Art of Problem Solving is an ACS WASC Accredited School.