AoPS Community

www.artofproblemsolving.com/community/c2013467
by jasperE3

Problem 1 Circles k and l intersect at points P and Q. Let A be an arbitrary point on k distinct from P and Q. Lines $A P$ and $A Q$ meet l again at B and C. Prove that the altitude from A in triangle $A B C$ passes through a point that does not depend on A.

Problem 2 Let a, b, c, m be integers, where $m>1$. Prove that if

$$
a^{n}+b n+c \equiv 0 \quad(\bmod m)
$$

for each natural number n, then $b^{2} \equiv 0(\bmod m)$. Must $b \equiv 0(\bmod m)$ also hold?
Problem 3 A sequence $\left(x_{n}\right)$ satisfies $x_{n+1}=\frac{x_{n}^{2}+a}{x_{n-1}}$ for all $n \in \mathbb{N}$. Prove that if x_{0}, x_{1}, and $\frac{x_{0}^{2}+x_{1}^{2}+a}{x_{0} x_{1}}$ are integers, then all the terms of sequence $\left(x_{n}\right)$ are integers.

