AoPS Community

www.artofproblemsolving.com/community/c2014379
by jasperE3

Problem 1 Find all integers x, y, z such that $x^{2}\left(x^{2}+y\right)=y^{z+1}$.
Problem 2 Let k_{0} be a unit semi-circle with diameter $A B$. Assume that k_{1} is a circle of radius $r_{1}=\frac{1}{2}$ that is tangent to both k_{0} and $A B$. The circle k_{n+1} of radius r_{n+1} touches k_{n}, k_{0}, and $A B$. Prove that:
(a) For each $n \in\{2,3, \ldots\}$ it holds that $\frac{1}{r_{n+1}}+\frac{1}{r_{n-1}}=\frac{6}{r_{n}}-4$.
(b) $\frac{1}{r_{n}}$ is either a square of an even integer, or twice a square of an odd integer.

Problem 3 Let F be the collection of subsets of a set with n elements such that no element of F is a subset of another of its elements. Prove that

$$
|F| \leq\binom{ n}{\lfloor n / 2\rfloor} .
$$

