AoPS Community

www.artofproblemsolving.com/community/c2014380
by jasperE3

Problem 1 Determine the set of all real numbers α with the following property: For each positive c there exists a rational number $\frac{m}{n}(m \in \mathbb{Z}, n \in \mathbb{N})$ different than α such that

$$
\left|\alpha-\frac{m}{n}\right|<\frac{c}{n} .
$$

Problem 2 Determine all 6 -tuples (p, q, r, x, y, z) where p, q, r are prime, and x, y, z natural numbers such that $p^{2 x}=q^{y} r^{z}+1$.

Problem 3 Assume that the equality $2 B C=A B+A C$ holds in $\triangle A B C$. Prove that:
(a) The vertex A, the midpoints M and N of $A B$ and $A C$ respectively, the incenter I, and the circumcenter O belong to a circle k.
(b) The line $G I$, where G is the centroid of $\triangle A B C$ is a tangent to k.

