AoPS Community

www.artofproblemsolving.com/community/c2014382
by jasperE3

Problem 1 Assume that a is a given irrational number.
(a) Prove that for each positive real number ϵ there exists at least one integer $q \geq 0$ such that $a q-\lfloor a q\rfloor<\epsilon$.
(b) Prove that for given $\epsilon>0$ there exist infinitely many rational numbers $\frac{p}{q}$ such that $q>0$ and $\left|a-\frac{p}{q}\right|<\frac{\epsilon}{q}$.

Problem 2 Given two directly congruent triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ in a plane, assume that the circles with centers C and C^{\prime} and radii $C A$ and $C^{\prime} A^{\prime}$ intersect. Denote by \mathcal{M} the transformation that maps $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$. Prove that \mathcal{M} can be expressed as a composition of at most three rotations in the following way: The first rotation has the center in one of A, B, C and maps $\triangle A B C$ to $\triangle A_{1} B_{1} C_{1}$; The second rotation has the center in one of A_{1}, B_{1}, C_{1}, and maps $\triangle A_{1} B_{1} C_{1}$ to $\triangle A_{2} B_{2} C_{2}$; The third rotation has the center in one of A_{2}, B_{2}, C_{2} and maps $\triangle A_{2} B_{2} C_{2}$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$.

Problem 3 Let S be a set of n points $P_{1}, P_{2}, \ldots, P_{n}$ in a plane such that no three of the points are collinear. Let α be the smallest of the angles $\angle P_{i} P_{j} P_{k}(i \neq j \neq k \neq i, i, j, k \in$ $\{1,2, \ldots, n\})$. Find $\max _{S} \alpha$ and determine those sets S for which this maximal value is attained.

