

AoPS Community

www.artofproblemsolving.com/community/c2014382 by jasperE3

Problem 1 Assume that *a* is a given irrational number.

- (a) Prove that for each positive real number ϵ there exists at least one integer $q \ge 0$ such that $aq \lfloor aq \rfloor < \epsilon$.
- (b) Prove that for given $\epsilon > 0$ there exist infinitely many rational numbers $\frac{p}{q}$ such that q > 0 and $\left|a \frac{p}{q}\right| < \frac{\epsilon}{q}$.
- **Problem 2** Given two directly congruent triangles ABC and A'B'C' in a plane, assume that the circles with centers C and C' and radii CA and C'A' intersect. Denote by \mathcal{M} the transformation that maps $\triangle ABC$ to $\triangle A'B'C'$. Prove that \mathcal{M} can be expressed as a composition of at most three rotations in the following way: The first rotation has the center in one of A, B, C and maps $\triangle ABC$ to $\triangle A_1B_1C_1$; The second rotation has the center in one of A_1, B_1, C_1 , and maps $\triangle A_1B_1C_1$ to $\triangle A_2B_2C_2$; The third rotation has the center in one of A_2, B_2, C_2 and maps $\triangle A_2B_2C_2$ to $\triangle A'B'C'$.
- **Problem 3** Let *S* be a set of *n* points P_1, P_2, \ldots, P_n in a plane such that no three of the points are collinear. Let α be the smallest of the angles $\angle P_i P_j P_k$ ($i \neq j \neq k \neq i, i, j, k \in \{1, 2, \ldots, n\}$). Find $\max_S \alpha$ and determine those sets *S* for which this maximal value is attained.

AoPS Online AoPS Academy AoPS Continue