Art of Problem Solving

AoPS Community

2021 Canadian Junior Mathematical Olympiad

CJMO - Canadian Junior Mathematical Olympiad 2021

www.artofproblemsolving.com/community/c2014450
by parmenides51, MortemEtInteritum

1 Let C_{1} and C_{2} be two concentric circles with C_{1} inside C_{2}. Let P_{1} and P_{2} be two points on C_{1} that are not diametrically opposite. Extend the segment $P_{1} P_{2}$ past P_{2} until it meets the circle C_{2} in Q_{2}. The tangent to C_{2} at Q_{2} and the tangent to C_{1} at P_{1} meet in a point X. Draw from X the second tangent to C_{2} which meets C_{2} at the point Q_{1}. Show that $P_{1} X$ bisects angle $Q_{1} P_{1} Q_{2}$.

2 How many ways are there to permute the first n positive integers such that in the permutation, for each value of $k \leq n$, the first k elements of the permutation have distinct remainder mod k ?

- those were also CMO problems

3 Let $A B C D$ be a trapezoid with $A B$ parallel to $C D,|A B|>|C D|$, and equal edges $|A D|=|B C|$. Let I be the center of the circle tangent to lines $A B, A C$ and $B D$, where A and I are on opposite sides of $B D$. Let J be the center of the circle tangent to lines $C D, A C$ and $B D$, where D and J are on opposite sides of $A C$. Prove that $|I C|=|J B|$.

4 Let $n \geq 2$ be some fixed positive integer and suppose that $a_{1}, a_{2}, \ldots, a_{n}$ are positive real numbers satisfying $a_{1}+a_{2}+\cdots+a_{n}=2^{n}-1$.

Find the minimum possible value of

$$
\frac{a_{1}}{1}+\frac{a_{2}}{1+a_{1}}+\frac{a_{3}}{1+a_{1}+a_{2}}+\cdots+\frac{a_{n}}{1+a_{1}+a_{2}+\cdots+a_{n-1}}
$$

5 A function f from the positive integers to the positive integers is called Canadian if it satisfies

$$
\operatorname{gcd}(f(f(x)), f(x+y))=\operatorname{gcd}(x, y)
$$

for all pairs of positive integers x and y.
Find all positive integers m such that $f(m)=m$ for all Canadian functions f.

