

AoPS Community

2021 Canadian Junior Mathematical Olympiad

CJMO - Canadian Junior Mathematical Olympiad 2021

www.artofproblemsolving.com/community/c2014450 by parmenides51, MortemEtInteritum

- 1 Let C_1 and C_2 be two concentric circles with C_1 inside C_2 . Let P_1 and P_2 be two points on C_1 that are not diametrically opposite. Extend the segment P_1P_2 past P_2 until it meets the circle C_2 in Q_2 . The tangent to C_2 at Q_2 and the tangent to C_1 at P_1 meet in a point X. Draw from X the second tangent to C_2 which meets C_2 at the point Q_1 . Show that P_1X bisects angle $Q_1P_1Q_2$.
- **2** How many ways are there to permute the first *n* positive integers such that in the permutation, for each value of $k \le n$, the first *k* elements of the permutation have distinct remainder mod *k*?

- those were also CMO problems

- **3** Let ABCD be a trapezoid with AB parallel to CD, |AB| > |CD|, and equal edges |AD| = |BC|. Let I be the center of the circle tangent to lines AB, AC and BD, where A and I are on opposite sides of BD. Let J be the center of the circle tangent to lines CD, AC and BD, where D and J are on opposite sides of AC. Prove that |IC| = |JB|.
- 4 Let $n \ge 2$ be some fixed positive integer and suppose that a_1, a_2, \ldots, a_n are positive real numbers satisfying $a_1 + a_2 + \cdots + a_n = 2^n 1$.

Find the minimum possible value of

$$\frac{a_1}{1} + \frac{a_2}{1+a_1} + \frac{a_3}{1+a_1+a_2} + \dots + \frac{a_n}{1+a_1+a_2+\dots+a_{n-1}}$$

5 A function *f* from the positive integers to the positive integers is called *Canadian* if it satisfies

$$gcd(f(f(x)), f(x+y)) = gcd(x, y)$$

for all pairs of positive integers x and y.

Find all positive integers m such that f(m) = m for all Canadian functions f.

Art of Problem Solving is an ACS WASC Accredited School.