AoPS Community

www.artofproblemsolving.com/community/c2014653
by jasperE3

Problem 1 Given non-zero real numbers u, v, w, x, y, z, how many different possibilities are there for the signs of these numbers if

$$
(u+i x)(v+i y)(w+i z)=i ?
$$

Problem 2 If a convex set of points in the line has at least two diameters, say $A B$ and $C D$, prove that $A B$ and $C D$ have a common point.

Problem 3 Assume that the numbers from the table

a_{11}	a_{12}	\cdots	$a_{1 n}$
a_{21}	a_{22}	\cdots	$a_{2 n}$
\vdots	\vdots		\vdots
$a_{n 1}$	$a_{n 2}$	\cdots	$a_{n n}$

satisfy the inequality:

$$
\sum_{j=1}^{n}\left|a_{j 1} x_{1}+a_{j 2} x_{2}+\ldots+a_{j n} x_{n}\right| \leq M
$$

for each choice $x_{j}= \pm 1$. Prove that

$$
\left|a_{11}+a_{22}+\ldots+a_{n n}\right| \leq M .
$$

Problem 4 Determine the largest integer $k(n)$ with the following properties: There exist $k(n)$ different subsets of a given set with n elements such that each two of them have a non-empty intersection.

