AoPS Community

www.artofproblemsolving.com/community/c2014655
by jasperE3

Problem 1 Given real numbers $a_{i}, b_{i}(i=1,2, \ldots, n)$ such that

$$
\begin{aligned}
& a_{1} \geq a_{2} \geq \ldots \geq a_{n}>0, \\
& b_{1} \geq a_{1} \\
& b_{1} b_{2} \geq a_{1} a_{2}, \\
& \vdots \\
& b_{1} b_{2} \cdots b_{n} \geq a_{1} a_{2} \cdots a_{n},
\end{aligned}
$$

prove that $b_{1}+b_{2}+\ldots+b_{n} \geq a_{1}+a_{2}+\ldots+a_{n}$.
Problem 2 Let $f(x)$ and $g(x)$ be degree n polynomials, and $x_{0}, x_{1}, \ldots, x_{n}$ be real numbers such that

$$
f\left(x_{0}\right)=g\left(x_{0}\right), f^{\prime}\left(x_{1}\right)=g^{\prime}\left(x_{1}\right), f^{\prime \prime}\left(x_{2}\right)=g^{\prime \prime}\left(x_{2}\right), \ldots, f^{(n)}\left(x_{n}\right)=g^{(n)}\left(x_{n}\right) .
$$

Prove that $f(x)=g(x)$ for all x.
Problem 3 Points A and B move with a constant speed along lines a and b. Two corresponding positions of these points A_{1}, B_{1}, and A_{2}, B_{2} are known. Find the position of A and B for which the length of $A B$ is minimal.

Problem 4 Let a and b be two natural numbers such that $a<b$. Prove that in each set of b consecutive positive integers there are two numbers whose product is divisible by $a b$.

Problem 5 Prove that the product of the sines of two opposite dihedrals in a tetrahedron is proportional to the product of the lengths of the edges of these dihedrals.

Problem 6 Let E be the set of $n^{2}+1$ closed intervals on the real axis. Prove that there exists a subset of $n+1$ intervals that are monotonically increasing with respect to inclusion, or a subset of $n+1$ intervals none of which contains any other interval from the subset.

