AoPS Community

www.artofproblemsolving.com/community/c2014656
by jasperE3

Problem 1 Given 6 points in a plane, assume that each two of them are connected by a segment. Let D be the length of the longest, and d the length of the shortest of these segments. Prove that $\frac{D}{d} \geq \sqrt{3}$.

Problem 2 Let $n>3$ be a positive integer. Prove that n is prime if and only if there exists a positive integer α such that $n!=n(n-1)(\alpha n+1)$.

Problem 3 Each side of a triangle $A B C$ is divided into three equal parts, and the middle segment in each of the sides is painted green. In the exterior of $\triangle A B C$ three equilateral triangles are constructed, in such a way that the three green segments are sides of these triangles. Denote by $A^{\prime}, B^{\prime}, C^{\prime}$ the vertices of these new equilateral triangles that dont belong to the edges of $\triangle A B C$, respectively. Let $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ be the points symmetric to $A^{\prime}, B^{\prime}, C^{\prime}$ with respect to $B C, C A, A B$.
(a) Prove that $\triangle A^{\prime} B^{\prime} C^{\prime}$ and $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ are equilateral.
(b) Prove that $A B C, A^{\prime} B^{\prime} C^{\prime}$, and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ have a common centroid.

Problem 4 If a polynomial of degree n has integer values when evaluated in each of $k, k+1, \ldots, k+n$, where k is an integer, prove that the polynomial has integer values when evaluated at each integer x.

Problem 5 Let n be an integer greater than 1 . Let $x \in \mathbb{R}$.
(a) Evaluate $S(x, n)=\sum(x+p)(x+q)$, where the summation is over all pairs (p, q) of different numbers from $\{1,2, \ldots, n\}$.
(b) Do there exist integers x, n for which $S(x, n)=0$?

Problem 6 Prove that the incenter coincides with the circumcenter of a tetrahedron if and only if each pair of opposite edges are of equal length.

