Art of Problem Solving

AoPS Community

Round 4

www.artofproblemsolving.com/community/c2016274
by jasperE3

- Day 1

Problem 1 Let M be a point on the altitude $C D$ of an acute-angled triangle $A B C$, and K and L the orthogonal projections of M on $A C$ and $B C$. Suppose that the incenter and circumcenter of the triangle lie on the segment $K L$.
(a) Prove that $C D=R+r$, where R and r are the circumradius and inradius, respectively.
(b) Find the minimum value of the ratio $C M: C D$.

Problem 2 Let K be a cube with edge n, where $n>2$ is an even integer. Cube K is divided into n^{3} unit cubes. We call any set of n^{2} unit cubes lying on the same horizontal or vertical level a layer. We dispose of $\frac{n^{3}}{4}$ colors, in each of which we paint exactly 4 unit cubes. Prove that we can always select n unit cubes of distinct colors, no two of which lie on the same layer.

Problem 3 Prove that for every prime number $p \geq 5$,
(a) p^{3} divides $\binom{2 p}{p}-2$;
(b) p^{3} divides $\binom{k p}{p}-k$ for every natural number k.

- Day 2

Problem 4 Let $f(x)$ be a polynomial of degree n with real coefficients, having n (not necessarily distinct) real roots. Prove that for all real x,

$$
f(x) f^{\prime \prime}(x) \leq f^{\prime}(x)^{2}
$$

Problem 5 On a unit circle with center $O, A B$ is an arc with the central angle $\alpha<90^{\circ}$. Point H is the foot of the perpendicular from A to $O B, T$ is a point on $\operatorname{arc} A B$, and l is the tangent to the circle at T. The line l and the angle $A H B$ form a triangle Δ.
(a) Prove that the area of Δ is minimal when T is the midpoint of arc $A B$.
(b) Prove that if S_{α} is the minimal area of Δ then the function $\frac{S_{\alpha}}{\alpha}$ has a limit when $\alpha \rightarrow 0$ and find this limit.

Problem 6 White and black checkers are put on the squares of an $n \times n$ chessboard ($n \geq 2$) according to the following rule. Initially, a black checker is put on an arbitrary square. In every consequent step, a white checker is put on a free square, whereby all checkers on the squares neighboring
by side are replaced by checkers of the opposite colors. This process is continued until there is a checker on every square. Prove that in the final configuration there is at least one black checker.

