

AoPS Community

1991 Bulgaria National Olympiad

Round 4

www.artofproblemsolving.com/community/c2016274 by jasperE3

– Day 1

Problem 1 Let M be a point on the altitude CD of an acute-angled triangle ABC, and K and L the orthogonal projections of M on AC and BC. Suppose that the incenter and circumcenter of the triangle lie on the segment KL.

(a) Prove that CD = R + r, where R and r are the circumradius and inradius, respectively. (b) Find the minimum value of the ratio CM : CD.

Problem 2 Let *K* be a cube with edge *n*, where n > 2 is an even integer. Cube *K* is divided into n^3 unit cubes. We call any set of n^2 unit cubes lying on the same horizontal or vertical level a layer. We dispose of $\frac{n^3}{4}$ colors, in each of which we paint exactly 4 unit cubes. Prove that we can always select *n* unit cubes of distinct colors, no two of which lie on the same layer.

Problem 3 Prove that for every prime number $p \ge 5$,

(a) p^3 divides $\binom{2p}{p} - 2$; (b) p^3 divides $\binom{kp}{p} - k$ for every natural number k.

– Day 2

Problem 4 Let f(x) be a polynomial of degree n with real coefficients, having n (not necessarily distinct) real roots. Prove that for all real x,

$$f(x)f''(x) \le f'(x)^2.$$

Problem 5 On a unit circle with center O, AB is an arc with the central angle $\alpha < 90^{\circ}$. Point H is the foot of the perpendicular from A to OB, T is a point on arc AB, and l is the tangent to the circle at T. The line l and the angle AHB form a triangle Δ .

(a) Prove that the area of Δ is minimal when *T* is the midpoint of arc *AB*.

(b) Prove that if S_{α} is the minimal area of Δ then the function $\frac{S_{\alpha}}{\alpha}$ has a limit when $\alpha \to 0$ and find this limit.

Problem 6 White and black checkers are put on the squares of an $n \times n$ chessboard ($n \ge 2$) according to the following rule. Initially, a black checker is put on an arbitrary square. In every consequent step, a white checker is put on a free square, whereby all checkers on the squares neighboring

AoPS Community

1991 Bulgaria National Olympiad

by side are replaced by checkers of the opposite colors. This process is continued until there is a checker on every square. Prove that in the final configuration there is at least one black checker.

Act of Problem Solving is an ACS WASC Accredited School.