AoPS Community

Serbia National Math Olympiad

www.artofproblemsolving.com/community/c216520
by mihajlon, Bugi, Ulanbek_Kyzylorda KTL

- Day 1

1 In a scalene triangle $A B C, \alpha$ and β respectively denote the interior angles at vertixes A and B. The bisectors of these two angles meet the opposite sides of the triangle at points D and E, respectively. Prove that the acute angle between the lines $D E$ and $A B$ does not exceed $\frac{|\alpha-\beta|}{3}$. Proposed by Dusan Djukic

2 Find the smallest natural number which is a multiple of 2009 and whose sum of (decimal) digits equals 2009
Proposed by Milos Milosavljevic
3 Determine the largest positive integer n for which there exist pairwise different sets $\mathbb{S}_{1}, \ldots, \mathbb{S}_{n}$ with the following properties: 1) $\left|\mathbb{S}_{i} \cup \mathbb{S}_{j}\right| \leq 2004$ for any two indices $1 \leq i, j \leq n$, and 2) $\mathbb{S}_{i} \cup \mathbb{S}_{j} \cup \mathbb{S}_{k}=\{1,2, \ldots, 2008\}$ for any $1 \leq i<j<k \leq n$
Proposed by Ivan Matic

- Day 2
$4 \quad$ Let $n \in \mathbb{N}$ and A_{n} set of all permutations $\left(a_{1}, \ldots, a_{n}\right)$ of the set $\{1,2, \ldots, n\}$ for which

$$
k \mid 2\left(a_{1}+\cdots+a_{k}\right), \text { for all } 1 \leq k \leq n .
$$

Find the number of elements of the set A_{n}.
Proposed by Vidan Govedarica, Serbia
5 Let x, y, z be arbitrary positive numbers such that $x y+y z+z x=x+y+z$.
Prove that

$$
\frac{1}{x^{2}+y+1}+\frac{1}{y^{2}+z+1}+\frac{1}{z^{2}+x+1} \leq 1
$$

When does equality occur?
Proposed by Marko Radovanovic
6 Triangle $A B C$ has incircle w centered as S that touches the sides $B C, C A$ and $A B$ at P, Q and R respectively. $A B$ isn't equal $A C$, the lines $Q R$ and $B C$ intersects at point M, the circle that passes through points B and C touches the circle w at point N, circumcircle of triangle MNP intersects with line $A P$ at $L(L$ isn't equal to P). Then prove that S, L and M lie on the same line

