

AoPS Community

2009 Serbia National Math Olympiad

Serbia National Math Olympiad

www.artofproblemsolving.com/community/c216520 by mihajlon, Bugi, Ulanbek_Kyzylorda KTL

-	Day 1
1	In a scalene triangle ABC , α and β respectively denote the interior angles at vertixes A and B . The bisectors of these two angles meet the opposite sides of the triangle at points D and E , respectively. Prove that the acute angle between the lines DE and AB does not exceed $\frac{ \alpha-\beta }{3}$. <i>Proposed by Dusan Djukic</i>
2	Find the smallest natural number which is a multiple of 2009 and whose sum of (decimal) digits equals 2009 <i>Proposed by Milos Milosavljevic</i>
3	Determine the largest positive integer n for which there exist pairwise different sets $\mathbb{S}_1,, \mathbb{S}_n$ with the following properties: 1) $ \mathbb{S}_i \cup \mathbb{S}_j \le 2004$ for any two indices $1 \le i, j \le n$, and 2) $\mathbb{S}_i \cup \mathbb{S}_j \cup \mathbb{S}_k = \{1, 2,, 2008\}$ for any $1 \le i < j < k \le n$ <i>Proposed by Ivan Matic</i>
-	Day 2

4 Let $n \in \mathbb{N}$ and A_n set of all permutations (a_1, \ldots, a_n) of the set $\{1, 2, \ldots, n\}$ for which

 $k|2(a_1 + \dots + a_k)$, for all $1 \le k \le n$.

Find the number of elements of the set A_n .

Proposed by Vidan Govedarica, Serbia

5 Let x, y, z be arbitrary positive numbers such that xy + yz + zx = x + y + z. Prove that

$$\frac{1}{x^2 + y + 1} + \frac{1}{y^2 + z + 1} + \frac{1}{z^2 + x + 1} \le 1$$

When does equality occur? *Proposed by Marko Radovanovic*

6 Triangle ABC has incircle w centered as S that touches the sides BC,CA and AB at P,Q and R respectively. AB isn't equal AC, the lines QR and BC intersects at point M, the circle that passes through points B and C touches the circle w at point N, circumcircle of triangle MNP intersects with line AP at L (L isn't equal to P). Then prove that S,L and M lie on the same line

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

© 2019 AoPS Incorporated 1

Art of Problem Solving is an ACS WASC Accredited School.