AoPS Community

www.artofproblemsolving.com/community/c217256
by syk0526

1 The incircle of a non-isosceles triangle $A B C$ with the center I touches the sides $B C, C A, A B$ at A_{1}, B_{1}, C_{1} respectively. The line $A I$ meets the circumcircle of $A B C$ at A_{2}. The line $B_{1} C_{1}$ meets the line $B C$ at A_{3} and the line $A_{2} A_{3}$ meets the circumcircle of $A B C$ at $A_{4}\left(\neq A_{2}\right)$. Define B_{4}, C_{4} similarly. Prove that the lines $A A_{4}, B B_{4}, C C_{4}$ are concurrent.

2 Let $a_{1}, a_{2}, \cdots, a_{k}$ be numbers such that $a_{i} \in\{0,1,2,3\}(i=1,2, \cdots, k)$. Let $z=\left(x_{k}, x_{k-1}, \cdots, x_{1}\right)_{4}$ be a base 4 expansion of $z \in\left\{0,1,2, \cdots, 4^{k}-1\right\}$. Define A as follows:

$$
A=\left\{z \mid p(z)=z, z=0,1, \cdots, 4^{k}-1\right\}
$$

where

$$
p(z)=\sum_{i=1}^{k} a_{i} x_{i} 4^{i-1}
$$

Prove that the number of elements in X is a power of 2.
3 Find all $a, b, c \in \mathbb{Z}, c \geq 0$ such that $a^{n}+2^{n} \mid b^{n}+c$ for all positive integers n where $2 a b$ is nonsquare.

4 Positive integers 1 to 9 are written in each square of a 3×3 table. Let us define an operation as follows: Take an arbitrary row or column and replace these numbers a, b, c with either nonnegative numbers $a-x, b-x, c+x$ or $a+x, b-x, c-x$, where x is a positive number and can vary in each operation.
(1) Does there exist a series of operations such that all 9 numbers turn out to be equal from the following initial arrangement a)? b)?
a) $\left.\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 2 & 8 & 5 \\ & \begin{array}{ll} \\ 9 & 3\end{array} & 4 \\ 6 & 7 & 1\end{array}\right)$
(2) Determine the maximum value which all 9 numbers turn out to be equal to after some steps.

5 The incircle ω of a quadrilateral $A B C D$ touches $A B, B C, C D, D A$ at E, F, G, H, respectively. Choose an arbitrary point X on the segment $A C$ inside ω. The segments $X B, X D$ meet ω at I, J respectively. Prove that $F J, I G, A C$ are concurrent.

6 Show that $x^{3}+x+a^{2}=y^{2}$ has at least one pair of positive integer solution (x, y) for each positive integer a.

