

AoPS Community

2009 Kosovo National Mathematical Olympiad

Kosovo National Mathematical Olympiad 2009
www.artofproblemsolving.com/community/c2330054

by parmenides51, Com10atorics

-	Grade 10
1	Find the graph of the function $y = x - x + x^2 $
2	If x_1 and x_2 are the solutions of the equation $x^2 - (m+3)x + m + 2 = 0$ Find all real values of m such that the following inequations are valid $\frac{1}{x_1} + \frac{1}{x_2} > \frac{1}{2}$ and $x_1^2 + x_2^2 < 5$
3	Prove that $\sqrt{2}$ is irrational.
4	Prove that if in the product of four consequtive natural numbers we add 1 , we get a perfect square.
5	In a circle four distinct points are fixed and each of them is assigned with a real number. Let those numbers be x_1, x_2, x_3, x_4 such that $x_1 + x_2 + x_3 + x_4 > 0$. Now we define a game with these numbers: If one of them, i.e. x_i , is a negative number, the player makes a move by adding the number x_i to his neighbors and changes the sign of the chosen number. The game ends when all the numbers are negative. Prove that this game ends in a finite number of steps.
-	Grade 11
1	Find the graph of the function $y = 1 - 1 - sinx $.
2	Solve the equation: $x^2 + 2xcos(x - y) + 1 = 0$
3	Let $n \ge 2$ be an integer. n is a prime if it is only divisible by 1 and n . Prove that there are infinitely many prime numbers.
4	Prove that $n^{11} - n$ is divisible by 11.
-	Grade 12
1	Find the graph of the function $y = x + 1 - x^3 $.
2	Let p be a prime number and n a natural one. How many natural numbers are between 1 and p^n that are relatively prime with p^n ?

AoPS Community

2009 Kosovo National Mathematical Olympiad

- **3** Let a, b and c be the sides of a triangle, prove that $\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} < 2$.
- 4 (a) Let a_1, a_2, a_3 be three real numbers. Prove that $(a_1 a_2)(a_1 a_3) + (a_2 a_1)(a_2 a_3) + (a_3 a_1)(a_2 a_2) \ge 0$. (b) Prove that the inequality above doesn't hold if we use four number instead of three.

Act of Problem Solving is an ACS WASC Accredited School.