Art of Problem Solving

AoPS Community

2012 Kosovo National Mathematical Olympiad

Kosovo National Mathematical Olympiad 2012

www.artofproblemsolving.com/community/c2330061
by parmenides51, Com10atorics

- \quad Grade 9

1 Find the value of $(1+2)\left(1+2^{2}\right)\left(1+2^{4}\right)\left(1+2^{8}\right) \ldots\left(1+2^{2048}\right)$.
2 If $a>1, b>1$ are the legths of the catheti of an right triangle and c the length of its hypotenuse, prove that $a+b \leq c \sqrt{2}$

3 The integers $a_{1}, a_{2}, \ldots, a_{2012}$ are given. Exactly 29 of them are divisible by 3 . Prove that the sum $a_{1}^{2}+a_{2}^{2}+\ldots+a_{2012}^{2}$ is divisible by 3 .

4 Inside of the square $A B C D$ the point P is given such that $|P A|:|P B|:|P C|=1: 2: 3$. Find $\angle A P B$.

5 The following square table is given with seven raws and seven columns: $a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}, a_{17}$ $a_{21}, a_{22}, a_{23}, a_{24}, a_{25}, a_{26}, a_{27} a_{31}, a_{32}, a_{33}, a_{34}, a_{35}, a_{36}, a_{37} a_{41}, a_{42}, a_{43}, a_{44}, a_{45}, a_{46}, a_{47} a_{51}, a_{52}, a_{53}, a_{54}, a_{55}, a$ $a_{61}, a_{62}, a_{63}, a_{64}, a_{65}, a_{66}, a_{67} a_{71}, a_{72}, a_{73}, a_{74}, a_{75}, a_{76}, a_{77}$
Suppose $a_{i j} \in\{0,1\}, \forall i, j \in\{1, \ldots, 7\}$. Prove that there exists at least one combination of the numbers 1 and 0 so that the following conditions hold: (i) Each raw and each column has exactly three 1's. ($i i) \sum_{j=1}^{7} a_{l j} a_{i j}=1, \forall l, i \in\{1, \ldots, 7\}$ and $l \neq i$.(so for any two distinct raws there is exactly one r so that the both raws have 1 in the r-th place). (iii) $\sum_{i=1}^{7} a_{i j} a_{i k}=1, \forall j, k \in$ $\{1, \ldots, 7\}$ and $j \neq k$.(so for any two distinct columns there is exactly one s so that the both columns have 1 in the s-th place).

- \quad Grade 10

1 Find the two last digits of 2012^{2012}.
2 Let a, b, c be the lengths of the sides of a triangle. Prove that, $\left|\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{a}-\frac{c}{b}-\frac{a}{c}\right|<1$
3 Let $n \not \equiv 2(\bmod 3)$. Is $\sqrt{\left\lfloor n+\frac{2 n}{3}\right\rfloor+7}, \forall n \in \mathbb{N}$, a natural number?
4 The right triangle $A B C$ with a right angle at C. From all the rectangles $C A_{1} M B_{1}$, where $A_{1} \in$ $B C, M \in A B$ and $B_{1} \in A C$ which one has the biggest area?

5 same as 9.5

- Grade 11

1 If $\left(x^{2}-x-1\right)^{n}=a_{2 n} x^{2 n}+a_{2 n-1} x^{2 n-1}+\ldots+a_{1} x+a_{0}$, where $a_{i}, i \in\{0,1,2, . ., 2 n\}$, find $a_{1}+a_{3}+\ldots+a_{2 n-1}$ and $a_{0}+a_{2}+a_{4}+\ldots+a_{2 n}$.

2 The bisector of acute angle α of the right triangle $A B C$ splits the side a in two segments with lengths m and n. Find the acute angle β and the lenths of the other two sides by knowing m and n.

3 Prove that for any integer $n \geq 2$ it holds that $\binom{2 n}{n}>\frac{4^{n}}{2 n}$.
$4 \quad$ Find the set of solutions to the equation $\log _{\lfloor x\rfloor}\left(x^{2}-1\right)=2$
5 same as 9.5

- Grade 12

1 Prove that for all $n \in \mathbb{N}$ we have $\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$.
2 In a sphere S_{0} we radius r a cube K_{0} has been inscribed. Then in the cube K_{0} another sphere S_{1} has been inscribed and so on to infinity. Calculate the volume of all spheres created in this way.

3 Solve the recurrence $R_{0}=1, R_{n}=n R_{n-1}+2^{n} \cdot n!$.
$4 \quad$ Let x, y be positive real numbers such that $x+y+x y=3$. Prove that $x+y \geq 2$. For what values of x and y do we have $x+y=2$?

5 same as 9.5

