Art of Problem Solving

AoPS Community

Round 4

www.artofproblemsolving.com/community/c2330982
by jasperE3

- Day 1

Problem 1 Consider the number obtained by writing the numbers $1,2, \ldots, 1990$ one after another. In this number every digit on an even position is omitted; in the so obtained number, every digit on an odd position is omitted; then in the new number every digit on an even position is omitted, and so on. What will be the last remaining digit?

Problem 2 Let be given a real number $\alpha \neq 0$. Show that there is a unique point P in the coordinate plane, such that for every line through P which intersects the parabola $y=\alpha x^{2}$ in two distinct points A and B, segments $O A$ and $O B$ are perpendicular (where O is the origin).

Problem 3 Let $n=p_{1} p_{2} \cdots p_{s}$, where p_{1}, \ldots, p_{s} are distinct odd prime numbers.
(a) Prove that the expression

$$
F_{n}(x)=\prod\left(x^{\frac{n}{p_{i_{1}} \cdots p_{i_{k}}}}-1\right)^{(-1)^{k}}
$$

where the product goes over all subsets $\left\{p_{i_{1}}, \ldots, p_{i_{k}}\right\}$ or $\left\{p_{1}, \ldots, p_{s}\right\}$ (including itself and the empty set), can be written as a polynomial in x with integer coefficients.
(b) Prove that if p is a prime divisor of $F_{n}(2)$, then either $p \mid n$ or $n \mid p-1$.

- Day 2

Problem 4 Suppose M is an infinite set of natural numbers such that, whenever the sum of two natural numbers is in M, one of these two numbers is in M as well. Prove that the elements of any finite set of natural numbers not belonging to M have a common divisor greater than 1.

Problem 5 Given a circular arc, find a triangle of the smallest possible area which covers the arc so that the endpoints of the arc lie on the same side of the triangle.

Problem 6 The base $A B C$ of a tetrahedron $M A B C$ is an equilateral triangle, and the lateral edges $M A, M B, M C$ are sides of a triangle of the area S. If R is the circumradius and V the volume of the tetrahedron, prove that $R S \geq 2 \mathrm{~V}$. When does equality hold?

