www.artofproblemsolving.com/community/c2331472
by Miku3D, InternetPerson10

1 Prove that for each real number $r>2$, there are exactly two or three positive real numbers x satisfying the equation $x^{2}=r\lfloor x\rfloor$.

2 For a polynomial P and a positive integer n, define P_{n} as the number of positive integer pairs (a, b) such that $a<b \leq n$ and $|P(a)|-|P(b)|$ is divisible by n. Determine all polynomial P with integer coefficients such that $P_{n} \leq 2021$ for all positive integers n.

3 Let $A B C D$ be a cyclic convex quadrilateral and Γ be its circumcircle. Let E be the intersection of the diagonals of $A C$ and $B D$. Let L be the center of the circle tangent to sides $A B, B C$, and $C D$, and let M be the midpoint of the arc $B C$ of Γ not containing A and D. Prove that the excenter of triangle $B C E$ opposite E lies on the line $L M$.

4 Given a 32×32 table, we put a mouse (facing up) at the bottom left cell and a piece of cheese at several other cells. The mouse then starts moving. It moves forward except that when it reaches a piece of cheese, it eats a part of it, turns right, and continues moving forward. We say that a subset of cells containing cheese is good if, during this process, the mouse tastes each piece of cheese exactly once and then falls off the table. Show that:
(a) No good subset consists of 888 cells.
(b) There exists a good subset consisting of at least 666 cells.
$5 \quad$ Determine all Functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that $f(f(a)-b)+b f(2 a)$ is a perfect square for all integers a and b.

