Art of Problem Solving

## AoPS Community

## 2015, Bay Area Mathematical Olympiad 8/12

www.artofproblemsolving.com/community/c233901
by adihaya

- $\quad$ February 24th, 2015
- BAMO-8

1 There are 7 boxes arranged in a row and numbered 1 through 7 . You have a stack of 2015 cards, which you place one by one in the boxes. The first card is placed in box\#1, the second in box\#2, and so forth up to the seventh card which is placed in box\#7. You then start working back in the other direction, placing the eighth card in box\#6, the ninth in box\#5, up to the thirteenth card being placed in box\#1. The fourteenth card is then placed in box\#2, and this continues until every card is distributed. What box will the last card be placed in?

2 Members of a parliament participate in various committees. Each committee consists of at least 2 people, and it is known that every two committees have at least one member in common. Prove that it is possible to give each member a colored hat (hats are available in black, white or red) so that every committee contains at least 2 members with different hat colors.

3 Which number is larger, $A$ or $B$, where

$$
A=\frac{1}{2015}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2015}\right)
$$

and

$$
B=\frac{1}{2016}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2016}\right) ?
$$

Prove your answer is correct.
4 In a quadrilateral, the two segments connecting the midpoints of its opposite sides are equal in length. Prove that the diagonals of the quadrilateral are perpendicular.
(In other words, let $M, N, P$, and $Q$ be the midpoints of sides $A B, B C, C D$, and $D A$ in quadrilateral $A B C D$. It is known that segments $M P$ and $N Q$ are equal in length. Prove that $A C$ and $B D$ are perpendicular.)

- BAMO-12

1 Same as BAMO-8\#3.
2 Same as BAMO-8\#4.

3 Let $k$ be a positive integer. Prove that there exist integers $x$ and $y$, neither of which is divisible by 3 , such that $x^{2}+2 y^{2}=3^{k}$.

4 Let $A$ be a corner of a cube. Let $B$ and $C$ the midpoints of two edges in the positions shown on the figure below:

```
http://i.imgur.com/tEODnV0.png
```

The intersection of the cube and the plane containing $A, B$, and $C$ is some polygon, $P$.

- How many sides does $P$ have? Justify your answer.
- Find the ratio of the area of $P$ to the area of $\triangle A B C$ and prove that your answer is correct.
$5 \quad$ We are given $n$ identical cubes, each of size $1 \times 1 \times 1$. We arrange all of these $n$ cubes to produce one or more congruent rectangular solids, and let $B(n)$ be the number of ways to do this.

For example, if $n=12$, then one arrangement is twelve $1 \times 1 \times 1$ cubes, another is one $3 \times 2 \times 2$ solid, another is three $2 \times 2 \times 1$ solids, another is three $4 \times 1 \times 1$ solids, etc. We do not consider, say, $2 \times 2 \times 1$ and $1 \times 2 \times 2$ to be different; these solids are congruent. You may wish to verify, for example, that $B(12)=11$.
Find, with proof, the integer $m$ such that $10^{m}<B\left(2015^{100}\right)<10^{m+1}$.

- http://tinyurl.com/adihaya-bamo-notice These problems were created by the BAMO Organizing Cor

The Bay Area Mathematical Olympiad committee can be emailed at bamo@msri.org (mailto: bamo@msri.org). Visit their website at bamo.org (http://bamo.org).

