AoPS Community

Bulgaria National Olympiad 1996, Round 4

www.artofproblemsolving.com/community/c2381894
by myh2910, Jjesus

Day 1

1 Find all prime numbers p, q for which $p q$ divides $\left(5^{p}-2^{p}\right)\left(5^{q}-2^{q}\right)$.
2 Find the side length of the smallest equilateral triangle in which three discs of radii $2,3,4$ can be placed without overlap.

3 The quadratic polynomials f and g with real coefficients are such that if $g(x)$ is an integer for some $x>0$, then so is $f(x)$. Prove that there exist integers m, n such that $f(x)=m g(x)+n$ for all x.

Day 2

1 Sequence $\left\{a_{n}\right\}$ it define $a_{1}=1$ and

$$
a_{n+1}=\frac{a_{n}}{n}+\frac{n}{a_{n}}
$$

for all $n \geq 1$
Prove that $\left\lfloor a_{n}^{2}\right\rfloor=n$ for all $n \geq 4$.
2 The quadrilateral $A B C D$ is inscribed in a circle. The lines $A B$ and $C D$ meet each other in the point E, while the diagonals $A C$ and $B D$ in the point F. The circumcircles of the triangles $A F D$ and $B F C$ have a second common point, which is denoted by H. Prove that $\angle E H F=90^{\circ}$.

3 A square table of size 7×7 with the four corner squares deleted is given.

- What is the smallest number of squares which need to be colored black so that a 5 -square entirely uncolored Greek cross (Figure 1) cannot be found on the table?
- Prove that it is possible to write integers in each square in a way that the sum of the integers in each Greek cross is negative while the sum of all integers in the square table is positive.

Figure 1.

