Art of Problem Solving

AoPS Community

Round 4

www.artofproblemsolving.com/community/c2382128
by jasperE3

- Day 1

Problem 1 In triangle $A B C$, point O is the center of the excircle touching the side $B C$, while the other two excircles touch the sides $A B$ and $A C$ at points M and N respectively. A line through O perpendicular to $M N$ intersects the line $B C$ at P. Determine the ratio $A B / A C$, given that the ratio of the area of $\triangle A B C$ to the area of $\triangle M N P$ is $2 R / r$, where R is the circumradius and r the inradius of $\triangle A B C$.

Problem 2 Prove that the sequence $\left(a_{n}\right)$, where

$$
a_{n}=\sum_{k=1}^{n}\left\{\frac{\left\lfloor 2^{k-\frac{1}{2}}\right\rfloor}{2}\right\} 2^{1-k}
$$

converges, and determine its limit as $n \rightarrow \infty$.
Problem 3 Let p be a real number and $f(x)=x^{p}-x+p$. Prove that:
(a) Every root α of $f(x)$ satisfies $|\alpha|<p^{\frac{1}{p-1}}$;
(b) If p is a prime number, then $f(x)$ cannot be written as the product of two non-constant polynomials with integer coefficients.

- Day 2

Problem 4 At each of the given n points on a circle, either +1 or -1 is written. The following operation is performed: between any two consecutive numbers on the circle their product is written, and the initial n numbers are deleted. Suppose that, for any initial arrangement of +1 and -1 on the circle, after finitely many operations all the numbers on the circle will be equal to +1 . Prove that n is a power of two.

Problem 5 Prove that the perpendiculars, drawn from the midpoints of the edges of the base of a given tetrahedron to the opposite lateral edges, have a common point if and only if the circumcenter of the tetrahedron, the centroid of the base, and the top vertex of the tetrahedron are collinear.

Problem 6 Let x, y, z be pairwise coprime positive integers and $p \geq 5$ and q be prime numbers which satisfy the following conditions:
(i) $6 p$ does not divide $q-1$;
(ii) q divides $x^{2}+x y+y^{2}$;
(iii) q does not divide $x+y-z$.

Prove that $x^{p}+y^{p} \neq z^{p}$.

