

AoPS Community

1987 Bulgaria National Olympiad

Round 4

www.artofproblemsolving.com/community/c2382160 by jasperE3

– Day 1

- **Problem 1** Let $f(x) = x^n + a_1 x^{n-1} + \ldots + a_n$ $(n \ge 3)$ be a polynomial with real coefficients and n real roots, such that $\frac{a_{n-1}}{a_n} > n + 1$. Prove that if $a_{n-2} = 0$, then at least one root of f(x) lies in the open interval $\left(-\frac{1}{2}, \frac{1}{n+1}\right)$.
- **Problem 2** Let there be given a polygon P which is mapped onto itself by two rotations: ρ_1 with center O_1 and angle ω_1 , and ρ_2 with center O_2 and angle ω_2 ($0 < \omega_i < 2\pi$). Show that the ratio $\frac{\omega_1}{\omega_2}$ is rational.
- **Problem 3** Let MABCD be a pyramid with the square ABCD as the base, in which MA = MD, $MA^2 + AB^2 = MB^2$ and the area of $\triangle ADM$ is equal to 1. Determine the radius of the largest ball that is contained in the given pyramid.

– Day 2

- **Problem 4** The sequence $(x_n)_{n \in \mathbb{N}}$ is defined by $x_1 = x_2 = 1$, $x_{n+2} = 14x_{n+1} x_n 4$ for each $n \in \mathbb{N}$. Prove that all terms of this sequence are perfect squares.
- **Problem 5** Let *E* be a point on the median *AD* of a triangle *ABC*, and *F* be the projection of *E* onto *BC*. From a point *M* on *EF* the perpendiculars *MN* to *AC* and *MP* to *AB* are drawn. Prove that if the points N, E, P lie on a line, then *M* lies on the bisector of $\angle BAC$.
- **Problem 6** Let Δ be the set of all triangles inscribed in a given circle, with angles whose measures are integer numbers of degrees different than 45° , 90° and 135° . For each triangle $T \in \Delta$, f(T) denotes the triangle with vertices at the second intersection points of the altitudes of T with the circle.

(a) Prove that there exists a natural number n such that for every triangle $T \in \Delta$, among the triangles $T, f(T), \ldots, f^n(T)$ (where $f^0(T) = T$ and $f^k(T) = f(f^{k-1}(T))$) at least two are equal. (b) Find the smallest n with the property from (a).

Act of Problem Solving is an ACS WASC Accredited School.