AoPS Community

Round 4

www.artofproblemsolving.com/community/c2382160
by jasperE3

- Day 1

Problem 1 Let $f(x)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n}(n \geq 3)$ be a polynomial with real coefficients and n real roots, such that $\frac{a_{n-1}}{a_{n}}>n+1$. Prove that if $a_{n-2}=0$, then at least one root of $f(x)$ lies in the open interval $\left(-\frac{1}{2}, \frac{1}{n+1}\right)$.

Problem 2 Let there be given a polygon P which is mapped onto itself by two rotations: ρ_{1} with center O_{1} and angle ω_{1}, and ρ_{2} with center O_{2} and angle $\omega_{2}\left(0<\omega_{i}<2 \pi\right)$. Show that the ratio $\frac{\omega_{1}}{\omega_{2}}$ is rational.

Problem 3 Let $M A B C D$ be a pyramid with the square $A B C D$ as the base, in which $M A=M D$, $M A^{2}+A B^{2}=M B^{2}$ and the area of $\triangle A D M$ is equal to 1 . Determine the radius of the largest ball that is contained in the given pyramid.

- Day 2

Problem 4 The sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is defined by $x_{1}=x_{2}=1, x_{n+2}=14 x_{n+1}-x_{n}-4$ for each $n \in \mathbb{N}$. Prove that all terms of this sequence are perfect squares.

Problem 5 Let E be a point on the median $A D$ of a triangle $A B C$, and F be the projection of E onto $B C$. From a point M on $E F$ the perpendiculars $M N$ to $A C$ and $M P$ to $A B$ are drawn. Prove that if the points N, E, P lie on a line, then M lies on the bisector of $\angle B A C$.

Problem 6 Let Δ be the set of all triangles inscribed in a given circle, with angles whose measures are integer numbers of degrees different than $45^{\circ}, 90^{\circ}$ and 135°. For each triangle $T \in \Delta, f(T)$ denotes the triangle with vertices at the second intersection points of the altitudes of T with the circle.
(a) Prove that there exists a natural number n such that for every triangle $T \in \Delta$, among the triangles $T, f(T), \ldots, f^{n}(T)$ (where $f^{0}(T)=T$ and $f^{k}(T)=f\left(f^{k-1}(T)\right.$)) at least two are equal. (b) Find the smallest n with the property from (a).

