AoPS Community

Round 4

www.artofproblemsolving.com/community/c2382161
by jasperE3

- Day 1

Problem 1 Find all real parameters q for which there is a $p \in[0,1]$ such that the equation

$$
x^{4}+2 p x^{3}+\left(2 p^{2}-p\right) x^{2}+(p-1) p^{2} x+q=0
$$

has four real roots.
Problem 2 Let n and k be natural numbers and p a prime number. Prove that if k is the exact exponent of p in $2^{2^{n}}+1$ (i.e. p^{k} divides $2^{2^{n}}+1$, but p^{k+1} does not), then k is also the exact exponent of p in $2^{p-1}-1$.

Problem 3 Let M be an arbitrary interior point of a tetrahedron $A B C D$, and let $S_{A}, S_{B}, S_{C}, S_{D}$ be the areas of the faces $B C D, A C D, A B D, A B C$, respectively. Prove that

$$
S_{A} \cdot M A+S_{B} \cdot M B+S_{C} \cdot M C+S_{D} \cdot M D \geq 9 V,
$$

where V is the volume of $A B C D$. When does equality hold?

- Day 2

Problem 4 Let A, B, C be non-collinear points. For each point D of the ray $A C$, we denote by E and F the points of tangency of the incircle of $\triangle A B D$ with $A B$ and $A D$, respectively. Prove that, as point D moves along the ray $A C$, the line $E F$ passes through a fixed point.

Problem 5 The points of space are painted in two colors. Prove that there is a tetrahedron such that all its vertices and its centroid are of the same color.

Problem 6 Find all polynomials $p(x)$ satisfying $p\left(x^{3}+1\right)=p(x+1)^{3}$ for all x.

