AoPS Community

Round 4

www.artofproblemsolving.com/community/c2383722
by jasperE3

- Day 1

Problem 1 Solve the equation $5^{x} 7^{y}+4=3^{z}$ in nonnegative integers.
Problem 2 The diagonals of a trapezoid $A B C D$ with bases $A B$ and $C D$ intersect in a point O, and $A B / C D=k>1$. The bisectors of the angles $A O B, B O C, C O D, D O A$ intersect $A B, B C, C D, D A$ respectively at K, L, M, N. The lines $K L$ and $M N$ meet at P, and the lines $K N$ and $L M$ meet at Q. If the areas of $A B C D$ and $O P Q$ are equal, find the value of k.

Problem 3 Points $P_{1}, P_{2}, \ldots, P_{n}, Q$ are given in space ($n \geq 4$), no four of which are in a plane. Prove that if for any three distinct points $P_{\alpha}, P_{\beta}, P_{\gamma}$ there is a point P_{δ} such that the tetrahedron $P_{\alpha} P_{\beta} P_{\gamma} P_{\delta}$ contains the point Q, then n is an even number.

- Day 2

Problem 4 Let $a, b, a_{2}, \ldots, a_{n-2}$ be real numbers with $a b \neq 0$ such that all the roots of the equation

$$
a x^{n}-a x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-2} x^{2}-n^{2} b x+b=0
$$

are positive and real. Prove that these roots are all equal.
Problem 5 Let $0<x_{i}<1$ and $x_{i}+y_{i}=1$ for $i=1,2, \ldots, n$. Prove that

$$
\left(1-x_{1} x_{2} \cdots x_{n}\right)^{m}+\left(1-y_{1}^{m}\right)\left(1-y_{2}^{m}\right) \cdots\left(1-y_{n}^{m}\right)>1
$$

for any natural numbers m and n.
Problem 6 Let there be given a pyramid $S A B C D$ whose base $A B C D$ is a parallelogram. Let N be the midpoint of $B C$. A plane λ intersects the lines $S C, S A, A B$ at points P, Q, R respectively such that $\overline{C P} / \overline{C S}=\overline{S Q} / \overline{S A}=\overline{A R} / \overline{A B}$. A point M on the line $S D$ is such that the line $M N$ is parallel to λ. Show that the locus of points M, when λ takes all possible positions, is a segment of the length $\frac{\sqrt{5}}{2} S D$.

