

AoPS Community

1983 Bulgaria National Olympiad

Round 4

www.artofproblemsolving.com/community/c2383846 by jasperE3, Arman, hsiangshen

– Day 1

Problem 1 Determine all natural numbers n for which there exists a permutation (a_1, a_2, \ldots, a_n) of the numbers $0, 1, \ldots, n-1$ such that, if b_i is the remainder of $a_1 a_2 \cdots a_i$ upon division by n for $i = 1, \ldots, n$, then (b_1, b_2, \ldots, b_n) is also a permutation of $0, 1, \ldots, n-1$.

Problem 2 Let $b_1 \ge b_2 \ge \ldots \ge b_n$ be nonnegative numbers, and (a_1, a_2, \ldots, a_n) be an arbitrary permutation of these numbers. Prove that for every $t \ge 0$,

 $(a_1a_2+t)(a_3a_4+t)\cdots(a_{2n-1}a_{2n}+t) \le (b_1b_2+t)(b_3b_4+t)\cdots(b_{2n-1}b_{2n}+t).$

Problem 3 A regular triangular pyramid ABCD with the base side AB = a and the lateral edge AD = b is given. Let M and N be the midpoints of AB and CD respectively. A line α through MN intersects the edges AD and BC at P and Q, respectively.

(a) Prove that AP/AD = BQ/BC.
(b) Find the ratio AP/AD which minimizes the area of MQNP.

```
- Day 2
```

Problem 4 Find the smallest possible side of a square in which five circles of radius 1 can be placed, so that no two of them have a common interior point.

Problem 5 Can the polynomials $x^5 - x - 1$ and $x^2 + ax + b$, where $a, b \in Q$, have common complex roots?

Problem 6 Let a, b, c > 0 satisfy for all integers n, we have

$$|an| + |bn| = |cn|$$

Prove that at least one of a, b, c is an integer.

Art of Problem Solving is an ACS WASC Accredited School.