Art of Problem Solving

AoPS Community

Round 4

www.artofproblemsolving.com/community/c2383847
by jasperE3, TaiPan~SP!

- Day 1

Problem 1 Find all pairs of natural numbers (n, k) for which

$$
(n+1)^{k}-1=n!.
$$

Problem 2 Let n unit circles be given on a plane. Prove that on one of the circles there is an arc of length at least $\frac{2 \pi}{n}$ not intersecting any other circle.

Problem 3 In a regular $2 n$-gonal prism, bases $A_{1} A_{2} \cdots A_{2 n}$ and $B_{1} B_{2} \cdots B_{2 n}$ have circumradii equal to R. If the length of the lateral edge $A_{1} B_{1}$ varies, the angle between the line $A_{1} B_{n+1}$ and the plane $A_{1} A_{3} B_{n+2}$ is maximal for $A_{1} B_{1}=2 R \cos \frac{\pi}{2 n}$.

- Day 2

Problem 4 If $x_{1}, x_{2}, \ldots, x_{n}$ are arbitrary numbers from the interval [0,2], prove that

$$
\sum_{i=1}^{n} \sum_{j=1}^{n}\left|x_{i}-x_{j}\right| \leq n^{2}
$$

When is the equality attained?
Problem 5 Find all values of parameters a, b for which the polynomial

$$
x^{4}+(2 a+1) x^{3}+(a-1)^{2} x^{2}+b x+4
$$

can be written as a product of two monic quadratic polynomials $\Phi(x)$ and $\Psi(x)$, such that the equation $\Psi(x)=0$ has two distinct roots α, β which satisfy $\Phi(\alpha)=\beta$ and $\Phi(\beta)=\alpha$.

Problem 6 Find the locus of centroids of equilateral triangles whose vertices lie on sides of a given square $A B C D$.

