Art of Problem Solving

AoPS Community

Round 4

www.artofproblemsolving.com/community/c2383849
by jasperE3

- Day 1

Problem 1 Show that there exists a unique sequence of decimal digits $p_{0}=5, p_{1}, p_{2}, \ldots$ such that, for any k, the square of any positive integer ending with $\overline{p_{k} p_{k-1} \cdots p_{0}}$ ends with the same digits.

Problem 2 (a) Prove that the area of a given convex quadrilateral is at least twice the area of an arbitrary convex quadrilateral inscribed in it whose sides are parallel to the diagonals of the original one.
(b) A tetrahedron with surface area S is intersected by a plane perpendicular to two opposite edges. If the area of the cross-section is Q, prove that $S>4 Q$.

Problem 3 Each diagonal of the base and each lateral edge of a 9-gonal pyramid is colored either green or red. Show that there must exist a triangle with the vertices at vertices of the pyramid having all three sides of the same color.

- Day 2

Problem 4 If a, b, c are arbitrary nonnegative real numbers, prove the inequality

$$
a^{3}+b^{3}+c^{3}+6 a b c \geq \frac{1}{4}(a+b+c)^{3}
$$

with equality if and only if two of the numbers are equal and the third one equals zero.
Problem 5 Prove that the number of ways of choosing 6 among the first 49 positive integers, at least two of which are consecutive, is equal to $\binom{49}{6}-\binom{44}{6}$.

Problem 6 Show that if all lateral edges of a pentagonal pyramid are of equal length and all the angles between neighboring lateral faces are equal, then the pyramid is regular.

