AoPS Community

Round 4

www.artofproblemsolving.com/community/c2384801
by jasperE3

- Day 1

Problem 1 Find all pairs of natural numbers (m, n) bigger than 1 for which $2^{m}+3^{n}$ is the square of whole number.
I. Tonov

Problem 2 Let F be a polygon the boundary of which is a broken line with vertices in the knots (units) of a given in advance regular square network. If k is the count of knots of the network situated over the boundary of F, and ℓ is the count of the knots of the network lying inside F, prove that if the surface of every square from the network is 1 , then the surface S of F is calculated with the formulae:

$$
S=\frac{k}{2}+\ell-1
$$

V. Chukanov

Problem 3 Let $f(x)=a_{0} x^{3}+a_{1} x^{2}+a_{2} x+a_{3}$ be a polynomial with real coefficients $\left(a_{0} \neq 0\right)$ such that $|f(x)| \leq 1$ for every $x \in[-1,1]$. Prove that
(a) there exist a constant c (one and the same for all polynomials with the given property), for which
(b) $\left|a_{0}\right| \leq 4$.

V. Petkov

- Day 2

Problem 4 In the plane are given a circle k with radii R and the points $A_{1}, A_{2}, \ldots, A_{n}$, lying on k or outside k. Prove that there exist infinitely many points X from the given circumference for which

$$
\sum_{i=1}^{n} A_{i} X^{2} \geq 2 n R^{2}
$$

Does there exist a pair of points on different sides of some diameter, X and Y from k, such that

$$
\sum_{i=1}^{n} A_{i} X^{2} \geq 2 n R^{2} \text { and } \sum_{i=1}^{n} A_{i} Y^{2} \geq 2 n R^{2} ?
$$

H. Lesov

Problem 5 Let the subbishop (a bishop is the figure moving only by a diagonal) be a figure moving only by diagonal but only in the next cells (squares) of the chessboard. Find the maximal count of subbishops over a chessboard $n \times n$, no two of which are not attacking.

V. Chukanov

Problem 6 Some of the faces of a convex polyhedron M are painted in blue, others are painted in white and there are no two walls with a common edge. Prove that if the sum of surfaces of the blue walls is bigger than half surface of M then it may be inscribed a sphere in the polyhedron given (M).
(H. Lesov)

