AoPS Community

Round 4

www.artofproblemsolving.com/community/c2384803
by jasperE3

- Day 1

Problem 1 Let the sequence $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ is defined by the conditions: $a_{1}=2$ and $a_{n+1}=a_{n}^{2}-$ $a_{n}+1(n=1,2, \ldots)$. Prove that:
(a) a_{m} and a_{n} are relatively prime numbers when $m \neq n$.
(b) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{a_{k}}=1$
I. Tonov

Problem 2 Let the numbers $a_{1}, a_{2}, a_{3}, a_{4}$ form an arithmetic progression with difference $d \neq 0$. Prove that there are no exists geometric progressions $b_{1}, b_{2}, b_{3}, b_{4}$ and $c_{1}, c_{2}, c_{3}, c_{4}$ such that:

$$
a_{1}=b_{1}+c_{1}, a_{2}=b_{2}+c_{2}, a_{3}=b_{3}+c_{3}, a_{4}=b_{4}+c_{4} .
$$

Problem 3 Let $a_{1}, a_{2}, \ldots, a_{n}$ are different integer numbers in the range [100, 200] for which: $a_{1}+a_{2}+$ $\ldots+a_{n} \geq 11100$. Prove that it can be found at least number from the given in the representation of decimal system on which there are at least two equal digits.

L. Davidov

- Day 2

Problem 4 Find all functions $f(x)$ defined in the range ($-\frac{\pi}{2}, \frac{\pi}{2}$) that are differentiable at 0 and satisfy

$$
f(x)=\frac{1}{2}\left(1+\frac{1}{\cos x}\right) f\left(\frac{x}{2}\right)
$$

for every x in the range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

L. Davidov

Problem 5 Let the line ℓ intersects the sides $A C, B C$ of the triangle $A B C$ respectively at the points E and F. Prove that the line ℓ is passing through the incenter of the triangle $A B C$ if and only if the following equality is true:

$$
B C \cdot \frac{A E}{C E}+A C \cdot \frac{B F}{C F}=A B .
$$

H. Lesov

Problem 6 In the tetrahedron $A B C D, E$ and F are the midpoints of $B C$ and $A D, G$ is the midpoint of the segment $E F$. Construct a plane through G intersecting the segments $A B, A C, A D$ in the points M, N, P respectively in such a way that the sum of the volumes of the tetrahedrons $B M N P, C M N P$ and $D M N P$ to be minimal.
H. Lesov

