AoPS Community

Round 4

www.artofproblemsolving.com/community/c2384804
by jasperE3

- Day 1

Problem 1 Prove that there are don't exist integers a, b, c such that for every integer x the number $A=(x+a)(x+b)(x+c)-x^{3}-1$ is divisible by 9.
I. Tonov

Problem 2 Solve the system of equations:

$$
\left\{\begin{array}{l}
\sqrt{\frac{y(t-y)}{t-x}-\frac{4}{x}}+\sqrt{\frac{z(t-z)}{t-x}-\frac{4}{x}}=\sqrt{x} \\
\sqrt{\frac{z(t-z)}{t-y}-\frac{4}{y}}+\sqrt{\frac{x(t-x)}{t-y}-\frac{4}{y}}=\sqrt{y} \\
\sqrt{\frac{x(t-x)}{t-z}-\frac{4}{z}}+\sqrt{\frac{y(t-y)}{t-z}-\frac{4}{z}}=\sqrt{z} \\
x+y+z=2 t
\end{array}\right.
$$

if the following conditions are satisfied: $0<x<t, 0<y<t, 0<z<t$.
H. Lesov

Problem 3 Prove the equality:

$$
\sum_{k=1}^{n-1} \frac{1}{\sin ^{2} \frac{(2 k+1) \pi}{2 n}}=n^{2}
$$

where n is a natural number.
H. Lesov

- Day 2

Problem 4 Find maximal possible number of points lying on or inside a circle with radius R in such a way that the distance between every two points is greater than $R \sqrt{2}$.
H. Lesov

Problem 5 In a circle with radius R, there is inscribed a quadrilateral with perpendicular diagonals. From the intersection point of the diagonals, there are perpendiculars drawn to the sides of the quadrilateral.
(a) Prove that the feet of these perpendiculars $P_{1}, P_{2}, P_{3}, P_{4}$ are vertices of the quadrilateral that is inscribed and circumscribed.
(b) Prove the inequalities $2 r_{1} \leq \sqrt{2} R_{1} \leq R$ where R_{1} and r_{1} are radii respectively of the circumcircle and inscircle to the quadrilateral $P_{1} P_{2} P_{3} P_{4}$. When does equality hold?
H. Lesov

Problem 6 It is given a tetrahedron $A B C D$ for which two points of opposite edges are mutually perpendicular. Prove that:
(a) the four altitudes of $A B C D$ intersects at a common point H;
(b) $A H+B H+C H+D H<p+2 R$, where p is the sum of the lengths of all edges of $A B C D$ and R is the radii of the sphere circumscribed around $A B C D$.
H. Lesov

